量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常仅限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。
简介。当超级流体旋转时,形成了圆旋的晶格。涡旋晶格的振荡,所谓的Tkachenko模式[1-3](有关最近的评论,请参见参考文献。[4]),具有许多独特的属性。与固体中的普通声波不同,在低动量时,tkachenko波具有二次分散关系ω〜 Q 2,只有一个po降低[5-7]。tkachenko模式是自发对称性破坏的相当复杂的结果:超级流体涡流晶格中有许多对称性,但只有一个Nambu-Goldstone Boson(NGB)[8,9]。Tkachenko模式应存在于旋转的超流体4 HE中,但是在超电原子的旋转Bose-Einstein冷凝物中,最终观察到了这一点[10]。在更大的长度尺度上,Tkachenko模式被认为是螃蟹脉冲星的振荡模式的来源[11]。作为tkachenko模式是唯一的低能自由度,人们期望它可以通过涉及单个场地的有效领域理论(EFT)来描述。然而,到目前为止,对这种理论的结构的完全理解尚未实现。在二次级别上,效率拉格朗日[8]与Lifshitz标量[12]相吻合,但是Lagrangian中相互作用项的形式以及它们如何受到对称性的约束。需要这些相互作用项来计算Tkachenko模式的衰减率[13]。在这封信中,我们表明了非交易性领域理论(例如,参见参考文献。[14,15])提供了一个方便的框架,用于构建Tkachenko模式的有效领域理论。非交换性场理论(NCFT)可能与该问题相关是可以直观地理解的 - 旋转非同性主义系统正式等同于放置
非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。
摘要:铁磁性和超导性(FMS)的共存一直是冷凝物质物理学的迷人领域,可洞悉非常规超导配对,自旋三重相互作用以及拓扑保护的表面状态。本文综述了FMS研究中最新的理论和实验进步,重点是隧道光谱,自旋轨道耦合以及拓扑材料的作用。我们讨论了自旋极性电流,超导间隙和铁磁顺序之间的相互作用,以及在包括拓扑绝缘子和石墨烯在内的新型材料中识别和操纵这些现象的挑战。特定的重点是使用隧道光谱作为探测对称性的工具,以及外部磁场和自旋轨道耦合对这些系统的影响。
在本文中,我们在严格的定量信息流(QIF)(QIF)的框架中分析了LDP与舒适的组合,以及有关推理攻击产生的弹性的原因。qif自然捕获随机机制作为信息理论通道的(组合),从而可以以自然的方式精确建模各种推理攻击,并在这些攻击下测量私人信息的泄漏。我们利用K -RR机制与Shuflim模型的特定组合的对称性来实现准确表达泄漏的封闭公式。,我们提供了公式,这些公式显示了如何改善当地模型中泄漏的保护,并研究了泄漏的行为,以表现出LDP机制的隐私参数的各种值。
altermagnetism是与抗铁磁体和铁磁体的新阶段,该阶段的新阶段与抗铁磁铁和铁磁体相似性,由于其方向依赖性磁性,引入了一种新的指导原理,用于Spintronic/Spintronic/Thermoelectric应用。实现对设备设计的利用Altermagnetism的承诺取决于识别具有可调传输特性的材料。迄今为止,对固有的altermagnets的搜索集中在各向异性在晶体学对称和带结构中的作用。在这里,我们提出了一种不同的机制,该机制通过利用范·霍夫(Van Hove)奇异性的存在来实现哈伯德局部排斥与巡回磁性之间的相互作用来实现这一目标。我们表明,Altermagnetism在广泛的相互作用和掺杂范围内是稳定的,并且我们专注于自旋荷利转化率的可调性。
使用局部量子电路集合生成 k 设计(模拟 Haar 测度的伪随机分布,最高可达 k 矩)是量子信息和物理学中一个非常重要的问题。尽管人们对普通随机电路的这一问题有了广泛的了解,但对称性或守恒定律发挥作用的关键情况仍是根本性的挑战,人们对此了解甚少。在这里,我们构造了显式局部酉集合,在横向连续对称性下,在尤为重要的 SU(d) 情况下,它可以实现高阶酉 k 设计。具体来说,我们定义了由 4 局部 SU ( d ) 对称哈密顿量以及相关的 4 局部 SU ( d ) 对称随机幺正电路集合生成的卷积量子交替 (CQA) 群,并证明对于所有 k < n ( n − 3 )/ 2,它们分别形成并收敛到 SU ( d ) 对称 k 设计,其中 n 是量子位元的数量。我们用来获得结果的一项关键技术是 Okounkov-Vershik 方法的 S n 表示理论。为了研究 CQA 集合的收敛时间,我们使用杨氏正交形式和 S n 分支规则开发了一种数值方法。我们为各种重要电路架构的亚常数谱间隙和某些收敛时间尺度提供了强有力的证据,这与无对称性的情况形成对比。我们还全面解释了使用对无对称性情况有效的方法(包括 Knabe 的局部间隙阈值和 Nachtergaele 的鞅方法)严格分析收敛时间的困难和局限性。这表明,可能需要一种新方法来理解 SU (d) 对称局部随机电路的收敛时间。
对称性是我们理解自然基本定律的关键。对称性的存在意味着物理系统在特定变换下是不变的,这种不变性可能会产生深远的影响。例如,对称性论证表明,如果对行动的激励是均衡的,系统将保持其初始状态。在这里,我们将这一原理应用于量子比特链,并表明可以设计其汉密尔顿量的对称性,以便从本质上保护量子信息免受弛豫和退相干的影响。我们表明,该系统的相干性相对于其各个组件的相干性得到了极大增强。这种量子比特链可以使用由相对较少数量的超导约瑟夫森结组成的简单架构来实现。
在相对论量子力学中,1、2 Cliifford 代数自然地出现在狄拉克矩阵中。协变双线性、手性、CPT 对称性是一些在该理论中发挥基本作用的数学对象,它们以狄拉克代数的旋量和生成器的形式建立。Cliifford 代数的普遍性表明,它们有可能成为量子计算 3、4 和高能物理之间的纽带。事实上,最近 Martinez 等人 5 使用低 q 捕获量子离子计算机对网络规范理论进行了模拟实验演示。还观察到了粒子-反粒子产生机制与系统纠缠之间的关系,通过对数负性来衡量。此外,还有几篇论文将 Cliifford 代数技术用于量子计算。6 – 14
9 函数方法 ................................................................................................ 275 9.1 量子力学中的路径积分 .............................................................. 275 9.2 标量场的函数量化 .............................................................. 282 关联函数;费曼规则;函数导数和生成函数 9.3 量子场论和统计力学 ............................................. 292 9.4 电磁场的量化 ...................................................................... 294 9.5 自旋场的函数量化 ...................................................................... 298 反对换数;狄拉克传播子;狄拉克场的生成函数;QED;函数行列式 *9.6 函数形式主义中的对称性 ............................................................. 306 运动方程;守恒定律;沃德-高桥恒等式问题......................................................................................................................312