Loading...
机构名称:
¥ 5.0

使用局部量子电路集合生成 k 设计(模拟 Haar 测度的伪随机分布,最高可达 k 矩)是量子信息和物理学中一个非常重要的问题。尽管人们对普通随机电路的这一问题有了广泛的了解,但对称性或守恒定律发挥作用的关键情况仍是根本性的挑战,人们对此了解甚少。在这里,我们构造了显式局部酉集合,在横向连续对称性下,在尤为重要的 SU(d) 情况下,它可以实现高阶酉 k 设计。具体来说,我们定义了由 4 局部 SU ( d ) 对称哈密顿量以及相关的 4 局部 SU ( d ) 对称随机幺正电路集合生成的卷积量子交替 (CQA) 群,并证明对于所有 k < n ( n − 3 )/ 2,它们分别形成并收敛到 SU ( d ) 对称 k 设计,其中 n 是量子位元的数量。我们用来获得结果的一项关键技术是 Okounkov-Vershik 方法的 S n 表示理论。为了研究 CQA 集合的收敛时间,我们使用杨氏正交形式和 S n 分支规则开发了一种数值方法。我们为各种重要电路架构的亚常数谱间隙和某些收敛时间尺度提供了强有力的证据,这与无对称性的情况形成对比。我们还全面解释了使用对无对称性情况有效的方法(包括 Knabe 的局部间隙阈值和 Nachtergaele 的鞅方法)严格分析收敛时间的困难和局限性。这表明,可能需要一种新方法来理解 SU (d) 对称局部随机电路的收敛时间。

具有 SU(d) 的局部随机量子电路设计...

具有 SU(d) 的局部随机量子电路设计...PDF文件第1页

具有 SU(d) 的局部随机量子电路设计...PDF文件第2页

具有 SU(d) 的局部随机量子电路设计...PDF文件第3页

具有 SU(d) 的局部随机量子电路设计...PDF文件第4页

具有 SU(d) 的局部随机量子电路设计...PDF文件第5页

相关文件推荐

2023 年
¥4.0
2025 年
¥3.0