摘要:在经典计算中,Toom-Cook 是一种大数乘法方法,与其他算法(如教科书乘法和 Karatsuba 乘法)相比,其执行时间更快。对于量子计算中的使用,先前的工作考虑了 Toom-2.5 变体,而不是经典的更快、更突出的 Toom-3,主要是为了避免后者电路固有的非平凡除法运算。在本文中,我们研究了 Toom-3 乘法的量子电路,预计该电路的深度会比 Toom-2.5 电路的渐近更低。具体来说,我们设计了相应的量子电路,并采用了 Bodrato 提出的序列,以减少运算次数,特别是在非平凡除法方面,每次迭代减少到仅一次精确的 3 除法电路。此外,为了进一步降低剩余除法的成本,我们利用特定除法电路的独特属性,将其替换为常数乘以互易电路和相应的交换运算。我们的数值分析表明,与 Toom-2.5 相比,所得电路在 Toffoli 深度和量子比特数方面确实具有较低的渐近复杂度,但具有大量主要来自于实现除法运算的 Toffoli 门。
主要关键词