从不同的角度描述了抽象的突触多样性,从释放的特定神经递质到其多样化的生物物理特性和蛋白质组谱。然而,在大脑中所有突触种群中,尚未系统地识别出跨性水平的突触多样性。为了量化和识别神经元细胞类型的特定突触特征,我们将Syngo(突触基因本体学)数据库与小鼠新皮层的单细胞RNA测序数据相结合。我们表明,单独具有与所有基因相同的功率的突触基因可以区分细胞类型。细胞类型的歧视能力并非在突触基因上平均分布,因为我们可以识别具有更大细胞类型的表达的功能类别和突触室。突触基因和特定的Syngo类别属于三种不同类型的基因模块:在所有细胞类型上的逐步表达,选定的细胞类型中的梯度表达以及细胞类别类别或特定于细胞类别的特征。此数据提供了对新皮层突触多样性的更深入的了解,并确定潜在标记,以选择性地识别特定神经元种群中的突触。
编程 Python、C/C++、Java、Javascript、OCaml、CSS、R、SQL、Golang、GIT、脚本 (BASH)、LaTex 软件和库 Django、Tensorflow、Pytorch、Keras、Scikit-learn、Pandas、OpenCV、C++ STL、Azure Synapse 经验领域 机器学习、自动化软件、算法设计、数据分析、金融工程
我们的 4 周评估计划提供专家工程资源,以促进从本地 MS SQL(包括 SSIS、SSAS、SSRS 和 SQL 数据仓库)到 Azure(IaaS、PaaS - Azure SQL、弹性池、托管实例、Azure Synapse 和 Azure 分析服务)的数据迁移。我们期待通过此计划解决客户的迁移和产品功能特定障碍。
抽象应力调节各种记忆系统的活性,从而可以以自适应或适应不良的方式指导与环境的行为相互作用。在细胞水平上,大量证据表明,急性应激暴露引起的(NOR)肾上腺素和糖皮质激素释放会影响突触功能和突触可塑性,这是学习和记忆的关键基础。最近的证据表明,在网络中稀疏分布的神经元在大脑中支持记忆,称为Engram细胞集合。虽然应力对突触的生理和分子影响越来越充分地表征,但这些突触修饰如何塑造Engram Cell集成的多尺度动力学仍然知之甚少。在本综述中,我们讨论并整合有关急性应力如何影响突触功能的最新信息,以及这可能如何改变Engram Cell集成及其突触连接以塑造记忆力强度和记忆精度。我们在压力下提供了一个突触ENGRAM的机械框架,并提出了出色的问题,以解决我们对压力引起的记忆调制基础机制的理解时知识差距。
Barton P. Miller 博士 计算机科学教授 美国国家科学基金会网络安全卓越中心 威斯康星大学麦迪逊分校 Elisa Heymann 博士 高级科学家 – 副教授 美国国家科学基金会网络安全卓越中心 威斯康星大学麦迪逊分校 David Nordell 先生 海法大学海洋政策与战略研究中心 – Synapse 网络战略 Nikitas Nikitakos 教授 爱琴海大学
抽象的神经元细胞命运决定因素通过控制基因表达来调节神经元形态和突触连通性来确定神经元的身份。然而,尚不清楚神经元细胞命运决定因素是否具有突触模式形成的有丝分裂功能。在这里,我们在秀丽隐杆线虫的胆碱能运动神经元的瓷砖突触模式中确定了UNC-4同源蛋白及其Corepressor UNC-37/ Groucho的新作用。我们表明,在神经发生过程中不需要UNC-4,而是在有丝分裂后神经元中需要进行适当的突触模式。相比之下,在发育后和有丝分裂后神经元中都需要UNC-37。BAR-1/ B-蛋白突变抑制了UNC-4突变体的突触平铺缺陷,这对CEH-12/ HB9的表达进行了积极调节。异位CEH-12表达部分是UNC-4和UNC-37突变体的突触缺陷的基础。我们的结果揭示了神经元细胞命运决定因素在突触模式形成中通过抑制规范Wnt信号通路的新颖新颖的作用。
摘要 研究表明淀粉样蛋白前体 (APP) 调节突触稳态,但证据并不一致。特别是,控制 APP 向轴突和树突中突触运输的信号通路仍有待确定。我们之前已证明亨廷顿蛋白 (HTT)(与亨廷顿氏病有关的支架蛋白)调节神经突触中的 APP 运输,我们使用微流体皮质神经元网络芯片检查 APP 运输和定位到突触前和突触后区室。我们发现,在被 Ser/Thr 激酶 Akt 磷酸化后,HTT 调节轴突中的 APP 运输,但不调节树突中的 APP 运输。不可磷酸化的 HTT 的表达降低了轴突前向 APP 运输,降低了突触前 APP 水平,并增加了突触密度。消除 APPPS1 小鼠体内 HTT 磷酸化,过表达 APP,降低突触前 APP 水平,恢复突触数量,改善学习和记忆。Akt-HTT 通路和 APP 的轴突运输因此调节 APP 突触前水平和突触稳态。
蜜蜂是农作物和新鲜农产品生产中最重要的传粉昆虫。温度影响蜜蜂的存活,决定其发育质量,对养蜂生产意义重大。但对于发育阶段的低温应激如何导致蜜蜂死亡以及对后续发育产生什么亚致死影响知之甚少。早期蛹期是蛹期对低温最敏感的阶段。在本研究中,早期蛹虫分别暴露在20°C下12、16、24和48小时,然后在35°C下孵化直至羽化。我们发现48小时的低温持续时间导致70%的蜜蜂个体死亡。虽然12和16小时的死亡率似乎不是很高,但幸存个体的联想学习能力受到很大影响。蜜蜂脑切片显示低温处理可以导致蜜蜂大脑发育几乎停止。低温处理组(T24、T48)与对照组的基因表达谱显示,分别有1,267个和1,174个基因发生差异表达。差异表达基因功能富集分析表明,MAPK和过氧化物酶体信号通路上Map3k9、Dhrs4、Sod-2基因的差异表达对蜜蜂头部造成了氧化损伤;在FoxO信号通路上,InsR和FoxO基因上调,JNK、Akt、Bsk基因下调;在昆虫激素合成信号通路上,Phm和Spo基因下调。因此,我们推测低温应激影响激素调控。检测到与神经系统相关的通路有胆碱能突触、多巴胺能突触、GABA能突触、谷氨酸能突触、5-羟色胺能突触、神经营养素信号通路和突触小泡循环。这意味着蜜蜂的突触发育很可能受到低温应激的重大影响。了解低温应激如何影响蜜蜂大脑发育的生理及其如何影响蜜蜂行为,为更深入地理解社会性昆虫“恒温”发育的温度适应机制提供了理论基础,并有助于改进蜜蜂管理策略以确保蜂群的健康。