抽象阐明了突触分子(例如AMPA受体)如何介导神经元的通知并跟踪其行为过程中的动态表达对于了解认知和疾病至关重要,但是当前的技术障碍阻止了体内分子动力学的大规模探索。我们开发了一系列创新的方法论,这些方法突破了这些障碍:具有荧光标记的内源性AMPA受体的新敲蛋白小鼠系,在行为小鼠中成千上万个标记的突触的两光子成像,以及基于计算机视觉的自动突触检测。使用这些工具,我们可以纵向跟踪行为过程中突触种群的强度如何变化。我们使用这种方法来生成一个前所未有的详细时空图像突触的时空图,经历了感官体验的强度变化。更一般地,这些工具可以用作能够在任何行为范式中测量整个大脑区域的功能突触强度的光学探针,从而描述了分子精度的复杂系统范围的变化。
大脑连接非常精确,但大多数神经元一旦有机会就会与错误的伙伴形成突触。动态轴突-树突定位可以限制突触形成相遇,但发育中的大脑中时空相互作用动力学及其调节仍然基本未知。在这里,我们表明轴突伪足的动力学限制了突触形成和伙伴选择,而这些神经元原本不会被阻止形成错误的突触。利用 4D 成像技术对发育中的果蝇大脑进行研究,我们发现伪足动力学受自噬调控,自噬是一种普遍的降解机制,其在大脑发育中的作用仍不太清楚。自噬体以令人惊讶的特殊性在突触形成伪足中形成,随后伪足崩塌。计算建模和遗传实验表明,突触构建材料的自噬降解改变定量调节突触形成。伪足稳定性的增加导致错误的突触伙伴关系。因此,自噬通过动力学排除过程来限制不适当的伴侣选择,这对于连接特异性至关重要。
树突状细胞(DC)是启动和维持免疫反应的关键细胞。他们在体内平衡,炎症和自身免疫性中起着至关重要的作用。许多分子调节其功能,包括突触形成,迁移,免疫力和耐受性诱导。许多IEI的特征是在编码这些分子中的几个基因中突变,导致IEI的免疫效率,炎症和自身免疫性。目前,有465个天生的免疫力(IEI)已分为10个不同类别。但是,仅在少数IEI中报告了DC的全面研究。在这里,我们根据最近出版的IUIS分类审查了IEI分类中DC的生物学。我们已经审查了每个组类别中选定的IEI中的DC,并在DC中进行了深入的变化,其中可用的数据可用于DC在临床和免疫学表现中的作用。这些包括严重的免疫效率疾病,抗体缺陷,与相关和综合征特征的联合免疫差,尤其是突触形成的疾病以及免疫调节的疾病。
神经系统的整合作用,描述了突触和运动皮层 1913 年 - 埃德加·道格拉斯·阿德里安 (Edgar Douglas Adrian):神经中的全或无原则 1929 年 - 汉斯·伯杰 (Hans Berger):第一个人类脑电图 1932 年 - 扬·弗里德里希·滕尼斯 (Jan Friedrich Toennies):多通道墨水书写脑电图机 1932 年 - ED Adrian 和 C.S Sherrington 因在功能方面的工作获得诺贝尔奖
发育突触重塑对于形成精确的神经回路很重要,并且其破坏与自闭症和精神分裂症等神经发育障碍有关。小胶质细胞修剪突触,但这种突触修剪与重叠和并发神经发育过程的整合仍然难以捉摸。粘附G蛋白偶联受体ADGRG 1 / GPR 56以细胞类型的方式控制脑发育的多个方面:在神经祖细胞中,GPR 56调节皮质层压层,而在少突甘胶祖细胞细胞中,GPR 56在GPR 56中控制发育的骨髓和肌蛋白。在这里,我们表明小胶质细胞GPR 56以时间和电路依赖性方式在几个大脑区域保持适当的突触数。磷脂酰丝氨酸(PS)在突触前元素上以域特异性方式结合GPR 56,而GPR 56的小胶质细胞特异性缺失导致突触增加,这是由于PS + PES +突触前输入的小胶质细胞吞吐量降低而导致的。非常明显,小胶质细胞介导的突触修剪需要特定的GPR 56的剪接同工型。我们的目前数据在复杂的神经发育过程的背景下提供了小胶质细胞GPR 56介导的突触修剪的配体和同工型特定机制。
微量营养素对大脑连通性的影响尚不完全理解。分析全球人群中的人奶样品,我们确定碳环糖糖肌醇 - 肌醇是促进大脑发育的组成部分。我们确定在早期泌乳期间,当神经元连接迅速形成婴儿大脑时,它在人乳中最丰富。肌醇 - 肌醇促进了人类兴奋性神经元和培养的大鼠神经元的突触丰度,并以剂量依赖性的方式起作用。从机械上讲,肌醇 - 肌醇增强了神经元对诱导突触的透射性相互作用反应的能力。在小鼠中测试了肌醇 - 肌醇在开发大脑中的作用,其饮食补充剂扩大了成熟皮层中的兴奋性后突触部位。利用器官型切片培养系统,我们还确定肌醇 - 肌醇在成熟的脑组织中具有生物活性,并用这种碳环糖糖处理器官型切片增加了突触后特殊性和兴奋性突触密度的数量和大小。这项研究促进了我们对人类乳对婴儿大脑的影响的理解,并将肌醇 - 肌醇鉴定为促进神经元连接形成的母乳成分。
脉冲神经网络的通用模拟代码大部分时间都处于脉冲到达计算节点并需要传送到目标神经元的阶段。这些脉冲是在通信步骤之间的最后一个间隔内由分布在许多计算节点上的源神经元发出的,并且相对于其目标而言本质上是不规则的和无序的。为了找到这些目标,需要将脉冲发送到三维数据结构,并在途中决定目标线程和突触类型。随着网络规模的扩大,计算节点从越来越多的不同源神经元接收脉冲,直到极限情况下计算节点上的每个突触都有一个唯一的源。在这里,我们通过分析展示了这种稀疏性是如何在从十万到十亿个神经元的实际相关网络规模范围内出现的。通过分析生产代码,我们研究了算法更改的机会,以避免间接和分支。每个线程都承载着计算节点上相等份额的神经元。在原始算法中,所有线程都会搜索所有脉冲以挑选出相关的脉冲。随着网络规模的增加,命中率保持不变,但绝对拒绝次数会增加。我们的新替代算法将脉冲均匀地分配给线程,并立即根据目标线程和突触类型对它们进行并行排序。此后,每个线程仅完成向其自身神经元的脉冲部分的传递。无论线程数如何,所有脉冲都只被查看两次。新算法将脉冲传递中的指令数量减半,从而将模拟时间缩短了 40%。因此,脉冲传递是一个完全可并行的过程,具有单个同步点,因此非常适合多核系统。我们的分析表明,进一步的进展需要减少指令在访问内存时遇到的延迟。该研究为探索延迟隐藏方法(如软件流水线和软件诱导预取)奠定了基础。
Synapse 受雇于 GridLab,与生物多样性中心合作,以更好地了解实现这一清洁能源转型需要做些什么。利用最先进的电力部门和经济计算机模型,我们详细研究了田纳西河谷管理局从 2020 年代初到 2050 年的电力系统。通过对未来几种不同的愿景进行情景分析,我们将一种使用存储来平衡太阳能和风能而无需化石燃料来加速清洁能源未来的情景与一种遵循田纳西河谷管理局现状方法的情景进行了比较。我们发现,减少温室气体排放的清洁能源未来不仅可以满足能源和容量需求并可靠地提供电力,而且还可以为田纳西河谷消费者带来大量经济发展、公共卫生和能源公平效益(约数千亿美元)。
•动作电位 - 一种电荷,该电荷从轴突沿细胞体驱逐到轴突末端,在该电荷触发或抑制神经递质的释放•轴突•轴突 - 轴突 - 神经元的一部分,该神经元将信号从细胞体和靶细胞/轴突末端 - 轴突末端 - 与轴突接触的轴突末端,使其与另一个细胞接触。神经递质释放•细胞体的点 - 神经元的一部分决定是否沿轴突•dendrite发送信号 - 神经元的一部分是从其他神经元接收信号的一部分。• excitatory neuron – a neuron whose neurotransmitter stimulates another neuron, increasing the probability that the target neuron will fire an action potential • inhibitory neuron – a neuron whose neurotransmitter inhibits another neuron, decreasing the probability that the target neuron will fire an action potential • neuromuscular junction – the special synapse onto a muscle • neuron – nerve cell专门用于发送信息;其特征是长长的纤维投影称为轴突,较短的分支样突起,称为树突•神经递质 - 神经元在突触时神经元释放的化学物质,以将信号发送给附近的邻近神经元的树突;与树突上的特殊受体分子结合以产生信号•突触后神经元 - 树突接收神经递质
Tracy 实验室 Tracy 实验室专注于研究突触如何出现功能障碍,从而导致衰老和阿尔茨海默病期间的认知能力下降。该实验室整合了多种方法,包括电生理学、成像、小鼠模型、人类诱导多能干细胞 (iPSC) 衍生的神经元和蛋白质组学,以研究突触病理生理学和记忆障碍背后的分子机制。Tracy 实验室正在进行的三个项目如下所述:项目 1:突触可塑性,即活动依赖性的突触强度变化,被认为是一种使大脑能够编码新记忆的关键机制。可塑性诱导后突触的强化需要神经元树突中的局部蛋白质合成。我们正在使用人类 iPSC 衍生的神经元来研究突触可塑性启动树突局部蛋白质合成的机制,以及这些机制如何在表达阿尔茨海默病和相关痴呆症中发现的致病性 tau 的神经元中被破坏。项目 #2:Tracy 实验室正在研究突触后蛋白肾/脑蛋白 (KIBRA),用于阿尔茨海默病和脑老化模型。患有阿尔茨海默病和严重痴呆症的成年人的大脑中 KIBRA 水平显著降低。我们目前正在测试如何将基于 KIBRA 的肽输送到大脑中,以恢复 tau 蛋白病小鼠模型中的认知功能和突触可塑性。Tracy 实验室还在探索老年小鼠的认知功能如何对 KIBRA 蛋白水平敏感。这项研究可以揭示认知功能在正常衰老过程中如何下降。项目 #3:阿尔茨海默病的认知下降与大脑中致病性 tau 水平的增加有关。致病性 tau 可导致疾病模型中的突触功能障碍和突触丢失,但毒性 tau 如何诱导突触逐渐功能下降尚不清楚。我们正在研究用致病性 tau 处理的 iPSC 衍生的人类神经元突触后蛋白质组的动态变化,以确定最终导致突触丢失的突触中的渐进分子机制。