对于函数 f : X × Y →{ 0, 1 } 的某些选择。直观地说,对于每个问题对 ( x , y ),函数 f 指定 a 和 b 应该一致还是不一致才能成为获胜答案。请注意,对于每个问题对,两种可能性(即 a 和 b 一致或不一致的可能性)中恰好有一种会获胜,而另一种可能性则会失败。由于每个 XOR 游戏都由集合 X 和 Y、概率向量 π ∈ P ( X × Y ) 和函数 f : X × Y →{ 0, 1 } 唯一确定,因此,当方便时,我们将用四元组 ( X , Y , π , f ) 来标识相应的游戏 G。例如,CHSH 游戏是 XOR 游戏的一个例子,对应于四元组 ( { 0, 1 } , { 0, 1 } , π , f ),其中 π 是均匀概率向量,f ( x , y ) = x ∧ y 是 AND 函数。
所有复杂数据分析都由数学模型驱动。因此,高级数学建模可以为高维数据带来新的见解。本文旨在介绍来自代数拓扑领域的数学理论,特别是神经定理。我将逐步证明这一重要结果,该结果在特定条件下保证了拓扑空间与其神经之间的同伦等价性。通过介绍计算方法 Mapper (17),我将说明神经定理的重要性。Mapper 是拓扑数据分析 (TDA) 领域的一个有用工具,它以单纯复形的形式从高维数据中提取和可视化特征。在本文的最后一章,我将介绍 TDA 和 Mapper 的两个生物医学应用。前面介绍的数学理论和计算方法的影响通过乳腺癌和糖尿病研究 (11; 17) 中的惊人发现变得清晰起来。
3本地领域,J。W. S. Cassels 4扭曲理论的介绍,第二版,S。A. Hugget&K。P. Tod 5介绍一般相对性介绍,L。P. Hughston&K。P. Tod 7 Evolution and Dynaligation Systems的理论,J。Hofbauer&K。Sigmund 8在Banach and Banach Suross and Banach Surfors and Banach Surfiens,G。J. O. J. O. J. O. J. O. J. O. J. O. Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, M. REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups, second edition , D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: Selected topics, V. LUNDSGAARD HANSEN 19 Steps在交换代数中,R。Y。尖锐的52个有限马尔可夫链和算法应用,O.HäggströmSharp 20沟通理论,C。M。Goldie&R。G. E. Pinch 21 Lie类型的有限群体的表示,F。Digne&J。Michel 22设计,图形,代码及其链接,P。J. Cameron&J。H. van Lint 23 Complecter Elgebraic complex Elgebraic Corvers,F。Kirwan,F。Kirwan 24在Ellipt Intife curvers of Ellipt curves,J。W. S. W. S. W. S. w. w. w. w. w. w. we. H. Hida 27 Hilbert Space:紧凑型操作员和Trace Throrem,J。Retherford28潜在理论28在Complex Lane中的潜在理论,T。Ransford29本科代数,M。REID31 laplacian,在Riemannian歧管32 laplbr的laplacian,Reid lapbrbra,Reid lapbrbra,Reid lapbra,Reid cummberg 32 lapbrbra,Reid cummberg 32 lapbra, I. MacDonald 33代数d -Modules的入门,S。C. Cotinho 34复杂代数表面,A。Beauville35 Young Tableaux,W。Fulton37小波的数学介绍,P。Wojtaszczyk38 Harmian Maps and for Sytorn for M. k. 40 Ergodic theory and dynamical systems, M. POLLICOTT & M. YURI 41 The algorithmic resolution of diophantine equations, N. P. SMART 42 Equilibrium states in ergodic theory, G. KELLER 43 Fourier analysis on finite groups and applications, A. TERRAS 44 Classical invariant theory, P. J. OLVER 45 Permutation groups, P. J. CAMERON 46 Riemann surfaces: A primer, A. BEARDON 47 Introductory lectures on rings and modules, J. BEACHY 48 Set theory, A. HAJNÁL & P. HAMBURGER 49 An introduction to K-theory for C *-algebras, M. RØRDAM, F. LARSEN & N. LAUSTSEN 50 A brief guide to algebraic number theory, H. P. F. SWINNERTON-DYER 51 Steps in commutative algebra, R. Y.
g中的每个元素a和h中的每个元素h,h中的每个元素,元素a * h * a -1也在h中。换句话说,该操作在由整个组的元素结合时保留了子组的结构。示例5:在常规多边形的旋转和反射组中,由所有旋转组成的亚组是正常的亚组。当您通过任何其他旋转结合旋转时,结果仍然是旋转。iii。结果和讨论Sylow的愿景:开创性群体理论:路德维希·西洛(Ludwig Sylow)的工作标志着小组理论研究中的转折点。他认识到,通过调查有限群体的亚组,我们可以对该群体的性质获得宝贵的见解。Sylow的定理,特别是解决了有限组中主要功率顺序的子组的分布。这个概念是开创性的,因为它为理解群体因素化以及正常和非正常亚组的复杂性铺平了道路。
尽管它们的复杂性,但相互作用的系统仍负责各种有趣的现象,例如分数量子霍尔的效应[13,31,35],任何人的准颗粒的出现[12,23],多体定位[22]和量子多体scars [37]。这些现象中的许多现象都可以用少数新兴程度的自由元来描述。最简单的情况是相互作用的存在将系统转换为免费或几乎免费的系统的情况[24]。识别自由度的自由度可以用很少的参数来实现系统的效率描述,而这些参数仅在其大小上多个多种多样地生长。此外,相互作用系统中自由的出现决定了它们的热特性,淬灭的弹道/不同传播以及其准粒子激发的性质[24]。出乎意料的是,即使它们似乎具有强烈的相互作用,它们在热力学极限[15]中的表现几乎是自由的[15],例如横向和纵向线[36]或XYZ模型[17]。
摘要。本文的前两个部分(相应地,https://philpapers.org/rec/rec/penflt-2和https://philpapers.org/rec/rec/rec/penflt-3)表明,在希尔伯特(Hilbert)的范围内,对Fermat的最后一个概念的解释表明,在Hilthment的范围内,对Fermat的最后一段迹象表明,在范围内,这一迹象表明了一段范围的含义,并且在一个范围内都可以在一个范围内进行。 Kochen-第二部分中的Specker定理。相同的解释也可以用于基于格里森定理的证明FLT,并且与第二部分相似。(概率)衡量希尔伯特空间子空间的概念,尤其是其独特性的概念可以与部分代数或不可妥协的概念联系起来,或者将其解释为希尔伯特·阿里斯(Hilbert Arithmetic)两个双重分支的关系。对最后一个关系的调查允许FLT和Gleason定理在某种意义上等同于两个双对应物,而前者则可以从后者中推断出来,并且在与Gödel不完整相关的额外条件下,副副主义是对算术算术理论的额外条件。Qubit Hilbert Space本身可以通过FLT和Gleason定理的统一来解释。在广义上,通过希尔伯特算术在数字理论中的这种基本结果的证明可以推广到有关“量子数理论”的想法。它能够通过对希尔伯特算术的Peano算术的来源进行数学研究,通过调解“非标准双眼”及其两个双重分支,将其固有地与信息理论联系起来。然后,在更广泛的背景下,也可以重新实现无限分析及其在物理学上的革命性应用,例如,作为对时间量的方式(分别在物理学中被认为的时间派生过程中的时间衍生物)的探索,以便出现。最后,结果承认,仅由于其双重和愿意的对应物,对任何层次结构的产生或改变自身的变化方式。关键字:完整性,格里森定理,Fermat的最后一个定理,Hilbert Arithmetic,Idempotency and Eranchary,Kochen and Specker Therorem,Nonistard Biftion,Peano Arithmetic,Quantum Information
摘要:黑洞信息之谜源于广义相对论与量子理论对黑洞辐射性质的结论存在差异。根据霍金最初的论证,辐射是热的,因此其熵会随着黑洞的蒸发而单调增加。相反,由于量子理论中时间演化的可逆性,辐射熵应该在一定时间后开始减小,正如佩奇曲线所预测的那样。基于复制技巧的新计算证实了这种减小,并揭示了其几何起源:复制品之间形成的时空虫洞。在这里,我们从量子信息论的角度分析了这些结论与霍金最初结论之间的差异,特别是使用了量子德菲内蒂定理。该定理意味着存在额外的信息 W,它既不是黑洞的一部分,也不是辐射的一部分,而是起着参考的作用。通过复制技巧获得的熵可以被识别为以参考 W 为条件的辐射的熵 S ( R | W ),而霍金的原始结果对应于非条件熵 S ( R )。熵 S ( R | W ) 在数学上是集合平均值,在对 N 个独立准备的黑洞进行实验时,它获得了操作意义:对于较大的 N ,它等于它们联合辐射的归一化熵 S ( R 1 · · · RN ) / N 。这个熵和 S ( R ) 之间的差异意味着黑洞是相关的。因此,复制虫洞可以被解释为这种相关性的几何表示。我们的结果还表明广泛使用的随机幺正模型可以扩展到多黑洞,我们通过非平凡检验支持了这一点。
非局部博弈是理解纠缠和在具有多个空间分离的量子设备的环境中构建量子协议的基础工具。在这项工作中,我们继续了 Kalai 等人 (STOC '23) 发起的研究,该研究是在经典验证器和单个加密受限的量子设备之间进行的编译非局部博弈。我们的主要结果是,Kalai 等人提出的编译器对于任何双人 XOR 游戏都是可靠的。Tsirelson 的一个著名定理表明,对于 XOR 游戏,量子值由半定程序精确给出,我们通过证明 SDP 上界对于编译的游戏成立,直到编译产生的错误可以忽略不计,从而获得了我们的结果。这回答了 Natarajan 和 Zhang (FOCS '23) 提出的问题,他们展示了 CHSH 游戏特定情况的可靠性。利用我们的技术,我们获得了几个额外的结果,包括(1)并行重复 XOR 游戏的编译值的严格界限、(2)任何编译的 XOR 游戏的运算符自测试语句,以及(3)任何 XOR 游戏的“良好”平方和证书,从中可以看出运算符的刚性。
手性精确的频带(FBS)处于电荷中立性引起了人们的极大兴趣,提出了一种有趣的凝结物系统,以实现异国情调的多体现象,正如魔术角扭曲的双层石墨烯中特定的,用于超导性和基于三烯测量的超级素质性素质素质的超级吸光素,以实现Ececiton insecitons for EcciteNemation。然而,还没有开发出这种FB的通用物理模型。Here we present a mathematical theorem called bipartite double cover (BDC) theorem and prove that the BDC of line-graph (LG) lattices hosts at least two chiral exact flat bands of opposite chirality, i.e., yin-yang FBs, centered-around/at charge neutrality ( E = 0) akin to the chiral limit of twisted bilayer graphene.我们通过将其精确映射到六角形晶格的BDC的紧密结合晶格模型中来说明该定理,以分别用于强拓扑和三角形晶格的脆弱拓扑FBS。此外,我们使用轨道设计原理在非BDC晶格中实现这种异国风味的阳fb,以促进其真实的物质发现。本文不仅可以在Moiré异质结构以外的零能量上搜索精确的手性FB,而且还可以为发现具有FB启用的量子半导体而打开大门。