利用放射免疫沉淀分析(RIPA)裂解缓冲液(Servicebio,武汉,中国)获得总蛋白。使用双辛可宁(BCA)分析(Solarbio,北京,中国)定量蛋白质浓度。加入上样缓冲液后,将样品煮沸 5 分钟。然后,将 20 μg 蛋白质添加到每个泳道中,通过 8–15% 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,然后转移到聚偏氟乙烯(PVDF)膜上,用 5% 脱脂奶粉在含有 0.1% Tween 20 的 Tris 缓冲盐水(TBST)中封闭 2 小时。将稀释的针对 OASL(1:1,000)和 3-磷酸甘油醛脱氢酶(GADPH;1:10,000)的一抗与膜在 4 ℃ 下孵育过夜。用TBST清洗10 min后,与相应抗体孵育2 h,再用TBST清洗膜3次,最后采用电化学发光法(ECL,Thermo,China)观察结果。
错误监控是一种元认知过程,通过这一过程,我们能够在做出反应后检测并发出错误信号。监控我们的行为结果何时偏离预期目标对于行为、学习和高阶社交技能的发展至关重要。在这里,我们使用脑电图 (EEG) 探索了面部表情线索整合过程中错误监控的神经基础。我们的目标是研究依赖于面部线索整合的响应执行之前和之后错误监控的特征。我们遵循中额叶 theta 的假设,认为它是错误监控的强大神经元标记,因为它一直被描述为一种发出认知控制需求的信号机制。此外,我们假设 EEG 频域分量可能有利于研究复杂场景中的错误监控,因为它携带来自锁定和非锁相信号的信息。应用了一个具有挑战性的 go/no-go 扫视范式来引出错误:需要整合面部情绪信号和凝视方向来解决这个问题。我们从 20 名健康参与者处获取了脑电图数据,并在反应准备和执行期间以 θ 波段活动水平进行分析。尽管 θ 调制在错误监控过程中一直得到证实,但它开始发生的时间尚不清楚。我们发现正确和错误试验之间中额通道的 θ 功率存在差异。错误反应后 θ 波段立即升高。此外,在反应开始之前,我们观察到了相反的情况:错误之前的 θ 波段较低。这些结果表明 θ 波段活动不仅是错误监控的指标(这是增强认知控制所必需的),也是成功的必要条件。这项研究通过在复杂任务中甚至在执行反应之前就揭示与错误相关的模式并使用需要整合面部表情线索的范例,为 θ 波段在错误监控过程中的作用增加了先前的证据。
几十年来,农杆菌介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的 T-DNA 从细菌转移到植物细胞中,在那里它通过聚合酶θ (Pol h ) 介导的末端连接 (TMEJ) 随机整合到基因组中。通过同源重组 (HR) 将 T-DNA 靶向到特定基因组位点也是可能的,但此类基因靶向 (GT) 事件发生的频率很低,并且几乎总是伴随着随机整合事件。另一个复杂因素是,T-DNA 和目标位点重组的产物可能不仅映射到目标位点 (真正的 GT),还可能映射到基因组中的随机位置 (异位 GT)。在本研究中,我们通过使用突变了 TEBICHI 基因(该基因编码 Pol h )的拟南芥,研究了 TMEJ 功能如何影响植物中 GT 的生物学。在 TMEJ 功能强大的植物中,我们主要发现 GT 事件伴随着随机的 T-DNA 整合,而在 teb 突变体背景下获得的 GT 事件缺乏额外的 T-DNA 拷贝,证实了 Pol h 在 T-DNA 整合中的重要作用。Pol h 缺乏也会阻止异位 GT 事件,这表明导致此结果的事件序列需要 TMEJ。我们的研究结果提供了可用于制定在农作物中获得高质量 GT 事件的策略的见解。
tumefaciens介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的T-DNA从细菌转移到植物细胞,在该细菌中,它通过聚合酶theta(Pol H)介导的末端连接(TMEJ)随机地整合到基因组中。通过同源重组(HR)将T-DNA靶向特定的基因组基因座(HR),但这种基因靶向(GT)事件以低频发生,几乎总是伴随着随机整合事件。另一个复杂性是,T-DNA和目标基因座之间的重组的乘积不仅可以映射到目标基因座(TRUE GT),还可以映射到基因组中的随机位置(异位GT)。在这项研究中,我们通过使用用于Tebichi基因的Tebichi Gene突变的拟南芥,研究了TMEJ功能如何影响植物中GT的生物学,该基因编码为polH。虽然在TMEJ-Profientient植物中,我们主要发现GT事件伴随着随机T-DNA整合,而在TEB突变体背景中获得的GT事件缺乏其他T-DNA拷贝,从而证实了POL H在T-DNA整合中的基本作用。pol H的表现也阻止了异位GT事件,这表明导致此结果的事件顺序需要TMEJ。我们的发现提供了见解,可用于制定策略以获得农作物中的高质量GT事件。
抽象的氨基酰基-TRNA合酶(AARSS)是对蛋白质合成本质的家务酶。但是,越来越明显的是,某些AARS也具有非翻译功能。在这里,我们报告了三酰基-TRNA合成酶(THRRS)在肌源性分化中的非翻译功能的鉴定。我们发现,THRS在体外对体外和损伤诱导的骨骼肌再生进行负调节。此功能独立于THRR的氨基酸结合或氨基酰化活性,而THRR的敲低会导致增强的分化,而不会影响整体蛋白质的合成速率。此外,我们表明,THRR的非催化新域(UNE-T和TGS)对于肌原性功能是必需的且足够的。在寻找这种新功能的分子机制时,我们发现激酶JNK是THRR的下游靶标。我们的数据表明MEKK4和MKK4是肌发生中JNK的上游调节剂,而MEKK4-MKK4-JNK途径是THRR的肌源功能的中介。最后,我们表明THRR与AXIN1物理相互作用,破坏AXIN1-MEKK4相互作用,从而抑制JNK信号传导。在结论中,我们在维持骨骼肌发生稳态时发现了THRR的非翻译功能,并确定AXIN1-MEKK4-MKK4-MKK4-JNK信号传导轴是THRRS动作的直接目标。
神经工程领域的最新进展使得神经假体得以开发,这有助于神经系统疾病患者的功能恢复。在这项研究中,我们提出了一个实时神经形态系统来人工重现海马体 CA1 区域不同神经元群的 θ 波和放电模式。海马 θ 振荡(4-12 Hz)是一种重要的电生理节律,有助于导航、记忆和新颖性检测等各种认知功能。提出的 CA1 神经模拟电路包括现场可编程门阵列 (FPGA) 上的 100 个线性化的 Pinsky-Rinzel 神经元和 668 个兴奋性和抑制性突触。实施的 CA1 脉冲神经网络包括产生 θ 节律的主要神经元群:兴奋性锥体细胞、PV+ 篮状细胞和抑制性中间神经元 Oriens Lacunosum-Moleculare (OLM) 细胞。此外,还使用突发漏积分和放电 (LIF) 神经元模型在 FPGA 上实现了通过穿通通路从内嗅皮层到 CA1 区域、通过 Schaffer 侧支到 CA3 区域以及通过穹窿海马伞到内侧隔膜到 CA1 区域的主要输入。硬件实现的结果表明,所提出的 CA1 神经模拟电路成功重建了 theta 振荡,并在功能上说明了不同神经元群体放电反应之间的相位关系。还评估了内侧隔膜消除对 CA1 神经元群体放电模式和 theta 波特征的影响。该神经形态系统可被视为一个潜在平台,为未来神经假体应用开辟了机会。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
婴儿的社会认知能力在生命的第一年中显着发展。从个体发育的角度来看,社会行为的早期发展允许亲子依恋,从而增强了生存。因此,理论上,由社会大脑网络驱动的社会行为发展构成了此期间发展的核心。此外,了解社会发展期间神经网络内的成熟对于更好地掌握社会发育障碍的发展至关重要。因此,我们在5个月和10个月的时间左右进行了一项纵向研究,以绘制婴儿处理社交和非社会视频时大脑中功能网络的发展。使用脑电图,我们专注于最常见的社会行为频段:theta和alpha。我们发现,在生命的第一年,阿尔法网络保持相对稳定,对社交与非社会刺激没有选择性,Theta网络表现出强烈的全球重新调节。Theta网络的发展从婴儿早期的顶枕网发展到了第一年生命的末期。这种重新构造与对社交和非社会刺激的选择性相吻合,在观看社交视频与非社会视频时,婴儿将接近第一年的生命结束,显示出Theta沟通的同步性增加。我们的发现提供了有力的证据,证明了额叶theta网络参与社会大脑的发展。
摘要:辅酶 A (CoA) 是所有活细胞中普遍存在的辅助因子,据估计多达 9% 的细胞内酶促反应都需要它。结核分枝杆菌 (Mtb) 依靠自身生物合成 CoA 的能力来满足依赖这种辅因子发挥活性的无数酶促反应的需要。因此,CoA 生物合成途径被认为是新型结核病药物靶点的潜在来源。在之前的工作中,我们在体内和体外通过基因验证了 CoaBC 是 Mtb 的杀菌药物靶点。在这里,我们描述了化合物 1f 的鉴定,它是双功能 Mtb CoaBC 的 4′-磷酸泛酰-L-半胱氨酸合成酶 (PPCS;CoaB) 结构域的小分子抑制剂,并表明该化合物在 Mtb 中表现出靶向活性。发现化合物 1f 对 CoaBC 的抑制作用与 4 ' - 磷酸泛酸(CoaB 催化反应的底物)不具竞争性。此外,野生型 Mtb H37Rv 在暴露于化合物 1f 后进行的代谢组学分析产生了与泛酸和 CoA 生物合成扰动一致的特征。作为首次报道的 Mtb CoaBC 直接小分子抑制剂,该抑制剂具有靶向选择性全细胞活性,本研究证实了 CoaBC 的药物可行性,并从化学上验证了该靶点。关键词:结核病、药物发现、辅酶 A、CoaBC
ADHD 的特点是无法完成认知任务,而这些任务需要患者在较长时间内自我调节注意力。因此,研究持续注意力和抑制之间的相互作用十分重要,尤其是通过潜在的神经过程,如注意力(背侧或腹侧)网络对感知处理的调节( 8 )。高时间分辨率、脑磁图和脑电图 (M/EEG) 研究对于通过引出注意力机制来理解 ADHD 的神经生理学至关重要。例如,长期以来人们一直认为皮质振荡(即神经活动的节律模式)在大脑不同区域之间的交流中发挥作用( 9 ),而通过测量事件相关同步性,已证明 ADHD 患者的皮质振荡会发生改变( 10 )。
对手术专业知识的抽象客观研究几乎完全集中在公开的行为特征上,而几乎没有考虑基本的神经过程。神经影像技术的最新进展,例如,无线,可穿戴的头皮记录的脑电图(EEG),可以深入了解控制性能的神经过程。我们使用头皮录制的脑电图来检查手术专业知识和任务性能是否可以根据称为额叶Theta的振荡性脑活动信号来区分,这是一种认知控制过程的假定生物标志物。设计,设置和参与者的行为和脑电图数据是从1年(n = 25)和4年经验(n = 20)的牙科手术学员那里获取的,而他们在虚拟现实手术模拟器上执行低和高难度的钻探任务。在正面电极(索引额叶theta)中的4-7 Hz范围内的EEG功率是经验,任务难度和错误率的函数。结果对于专家而言,新手的正面theta功率更大(p = 0.001),但没有根据任务难度(p = 0.15)的变化,并且没有经验×难度互动(p = 0.87)。大脑 - 行为相关性显示,在经验丰富的组中,额叶theta和错误的误差之间存在显着的负相关关系(r = -0.594,p = 0.0058),但新手没有这种关系。结论我们发现额叶theta功率在手术经验之间有区别,但仅与经验丰富的外科医生的错误率相关,同时执行艰巨的任务。这些结果为专业知识与外科手术表现之间的关系提供了一种新颖的看法。