pyroelectrics是一个物质类别,随着系统温度的变化而发生极化的变化。这种效果可用于从热成像和传感到废物热转化到热驱动电子发射的应用。在这里,我们回顾了薄膜pyroelectrics的研究和利用的最新进展。利用建模,合成和特征的进步为铁电性的一个较差的子场之一提供了前进的途径。我们介绍了pyrolectricity的复杂物理现象,简要探讨了该领域的工作历史,并不仅突出了直接测量这种影响的新进步,而且还强调了我们控制薄膜材料的能力如何改变我们对这一反应的理解。最后,我们讨论了薄膜薄膜薄膜式设备的最新进展,并介绍了未来几年可能遵循的许多潜在的新方向。
[1] Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424 824 [2] Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR (2019) Nature Materials 18 668–678 [3] Mertens J, Eiden AL, Sigle DO, Sun Lombard, T, Aram, T, Sunda, A. kezis C, Aizpurua J, Milana S, Ferrari AC, Baumberg JJ (2013) ACS Nano 13 5033-5038 [4] Katzen JM, Tserkezis C, Cai Q, Li LH, Kim JM, Lee G, Yi GR, Hendren WR, Santos EJG, Bow and Huang FRM (2020) Appl. 12 19866-19873 [5] Huang F, Festy F, Richards D (2005) Applied Physics Letters 87 183101 [6] Atwater HA, Polman A (2010) Nature materials 9 205 [7] Turcheniuk K, Dumych T, Bily V, V, V, V, Boche and V. itsev V, Mariot P, Prevarskaya N, Boukherroub R, Szunerits S (2016) RSC Advances 6 1600-1610 [8] Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Materials Today 9 20 [9] Challener WA, C, Y, Y, Kar Y, W, Zhu Peng, Zhu Gokemeijer NJ, Hsia YT, Ju G, Rottmayer RE, Seigler MA, Gage EC (2009) Nature Photonics 3 220-224 [10] Matlak J, Rismaniyazdi E, Komvopoulos K (2018) Scientific reports 8 :9807 [11] Gulatassev U, Materials A, 2015 18 , 227-237 [12] Li W, Guler U, Kinsey N, Naik v, Boltasseva A, Guan J, Shalaev VM, Kildishev AV (2014) Advanced Materials 26 7959-7965 [13] Naldoni A, Guler U, Wang Z, Meng, Meng, LV, Gorov, AV, Kirov ldishev AV, Boltasseva A, Shalaev VM (2017) Advanced optical materials 5 1601031 [14] Gui L, Bagheri S, Strohfeldt N, Hentschel M, Zgrabik CM, Metzger B, Linnenbank H, Hu EL, Giessen H (2016–1575) ler U, Boltasseva A, Shalaev VM (2014) Science 344 263–264
抽象将平滑等距沉浸式列表聚合物网络的薄板的弹性自由能最小化是主流理论所声称的策略。在本文中,我们拓宽了可允许的自发变形类别:我们考虑脊层浸入式浸入,这可能会导致浸入浸入的表面尖锐的山脊。我们提出了一个模型,以计算沿此类山脊分布的额外能量。这种能量来自弯曲;在什么情况下,它显示出与薄板的厚度四相缩放,落在拉伸和弯曲能量之间。,我们通过研究磁盘的自发变形,将径向刺猬的自发变形置于测试中。我们预测了外部试剂(例如热量和照明)在材料中诱导的材料诱导的顺序程度而发展的褶皱数量。
芯片贴装是集成电路 (IC) 封装工艺中最关键的工艺之一。过去几年,芯片厚度越薄,漏源导通电阻 RDS(on) 越小,顶部金属和焊盘之间的硅电阻越低,散热性能越好,堆叠封装厚度越薄,重量越轻,这些要求就越高。这种三维技术代表了封装创新的下一波浪潮,并将在未来几年内实现大幅增长 (Ibrahim 等人,2007 年)。这些趋势对现有的电子封装技术(主要是芯片拾取工艺)提出了相当大的挑战。必须特别注意处理更薄芯片的工艺,以确保半导体产品的可靠性和质量 (Huiqiang 等人,2015 年;Carine 等人,2014 年)。
可调的涡流梁在各种领域具有相关性,包括通信和传感。在本文中,我们证明了具有二阶非线性敏感性的材料薄膜中非线性自旋轨道相互作用的可行性。值得注意的是,非线性张量可以混合泵场的长界线和横向成分。我们在从心理上观察到了我们从第二次谐波生成过程中的理论预测。尤其是,我们证明非线性薄膜可用于产生第二谐光灯的矢量涡流束,当时被圆形偏振的高斯束激发时。
Faraday旋转是固体,液体和气体的磁光反应中的基本效应。具有较大Verdet常数的材料在光学调节器,传感器和非转录器件(例如光学隔离器)中应用。在这里,我们证明了光的极化平面在中等磁力的HBN封装的WSE 2和Mose 2的HBN封装的单层中表现出巨大的法拉第旋转,在A激子转变周围表现出了几个度的巨大旋转。对于可见性方案中的任何材料,这将导致最高已知的VERDET常数为-1.9×10 7 deg T -1 cm -1。此外,与单层相比,HBN封装的双层MOS 2中的层间激子具有相反的符号的大型Verdet常数(VIL≈+2×10 5 deg T-1 cm-2)。巨大的法拉第旋转是由于原子较薄的半导体过渡金属二进制基因源中的巨大振荡器强度和激子的高g因子。我们推断出HBN封装的WSE 2和Mose 2单层的完全平面内复合物介电张量,这对于2D异质结构的Kerr,Faraday和Magneto-Circular二分法谱的预测至关重要。我们的结果在超薄光学极化设备中的二维材料的潜在使用中提出了至关重要的进步。
其电气和光学特性特性,ZnO,一种宽阔的直脉冲氧化物半导体,对电气,光学和信息技术设备的使用平台具有巨大的希望(Schuler and Aegerter 1999)(Sahay and Nath 2008)。通过当代固态技术采用的无形导电氧化物,包括反映热量,太阳能电池板和传感器以及光学电子产品的镜子,已成功地掺入了氧化锌(ZnO)薄膜(O'Brien,Nolan等人2010)。TCO在可见范围内应具有很高的光学透明度和强电导率。由于其强大的电导率和对可见光,ITO或最常见的氧化二锡氧化物的出色透明度,广泛使用的TCO(Srivastava and Kumar 2013)。在紫外线辐射下,ZnO薄膜晶体管(Tiginyanu,Ghimpu等人。2016)。
本出版物中的信息“原样”提供了。戴尔公司(Dell Inc.本出版物中描述的任何软件的使用,复制和分发都需要适用的软件许可。本文档可能包含某些与戴尔当前语言指南不符的单词。Dell计划在随后的未来发布中更新文档,以相应地修改这些单词。本文档可能包含来自第三方内容的语言,这些语言不受戴尔的控制,并且与戴尔当前有关戴尔自己内容的准则不一致。当相关第三方更新此类第三方内容时,将相应修订本文档。版权所有©2016-2021 Dell Inc.或其子公司。保留所有权利。Dell Technologies,Dell,EMC,Dell EMC和其他商标是Dell Inc.或其子公司的商标。其他商标可能是其各自所有者的商标。[6/21/2021] [技术白皮书] [H15089.7]
硅光子学已成为用于广泛应用的光子集成电路(PIC)的最广泛使用的平台之一。几乎所有这些都需要高速,低功率操作。调节剂仅基于硅,仅依赖于血浆分散效应来实现调节。血浆分散效应通过游离载体的移动引起材料的折射率变化,这意味着操作速度受这些载体的寿命限制,从而在数十吉哈特兹的命令下提供了最大可实现的带宽。在硅上新型材料的异质整合被认为是仅基于硅的调节剂的替代品。钛酸钡(BTO)就是一种可以集成到硅上的材料。在光子芯片上沉积为薄膜时,BTO表现出所有电极(EO)材料的最大塞子系数之一,同时是化学和热稳定的[1]。根据以下方程式,由于施加的电场e而导致的折射率n变化之间的线性关系给出了简化的描述: