拓扑量子计算可以通过将逻辑信息编码为具有非亚伯统计的任何人[1,2]来消除变形,并被认为是实现耐断层量量子计算机的最有效方法。Majorana零模式的行为就像Majorana Fermions一样,每种模式都是自身的反粒子[3],并承诺一个平台来实现代表非亚洲编织组的代表,从而实现拓扑量子计算[4,5]。然而,在实验系统(例如非常规超导体[6,7])中,Majorana零模式是否诱导零能量信号[8-13],铁磁原子链[14]和二维超导管vort vort [15,15]。无论如何,它不会影响Majorana零模式编织设计的探索。后来,还提出了高阶拓扑阶段作为物质的新拓扑阶段,其在多维维度下具有非平凡边界状态。例如,Langbehn等人。提出了二维二阶拓扑超导体,以实现零维的零零模式[17]。通过应用外部磁场[18-20],可以将一阶式托架超导体驱动为二阶对应方,其中局部Majorana零模式出现在拐角处[21 - 24]。要实现Majorana零模式的编织操作,关键过程是绝热时间依赖的
这些笔记中涵盖的主题呈现出不同级别的细节和数学严格的层次。讲座1介绍了后来讲座中考虑的几种拓扑绝缘子模型,并简要描述了关注的主要主题:不对称运输。讲座2的重点是从更多的显微镜描述中衍生宏观部分差分模型。讲座3至5个分析,用于磁性绝缘体的磁性schr odinger和狄拉克模型。这些笔记的核心是讲座6至10的材料。不对称转运首先在一维环境中考虑。然后,二维哈密顿量由一般的伪差异操作员进行建模,由域壁扩展进行分类,并以弗雷德霍尔姆操作机的边缘电导率和折射率的形式分配了几种等效的拓扑,均由Fredholm Opera tork的折叠式和折射率分配。讲座11和12描述了散装不同不变的概念,并调查了几个不变性的定义和计算,包括地图,绕组数字和Chern数字。第13节提出了界面传输问题作为整体方程的重新印象。这使我们能够对界面传输进行准确的数值模拟,并验证拓扑不变的鲁棒。讲座14将这些讲座中开发的理论应用于门控扭曲的双层石墨烯的分析。
1.1量子测量问题4 1.2操作量子力学7 1.2.1无量子量子理论9 1.2.2噪声量子理论10 1.3量子力学,重新制定和其他发展的解释17 1.3.1量子的解释和量子理论的解释和重新制定17 1.3.2的量子范围1.3.2隐藏可变的量子量和量子量的量子量22.3弱量和弱点20 1.1 1.4 bell 22 1. 4 bell 22 1. 4.参数25 1.4.2本地,量子和无信号相关性26 1.4.3钟不平等29 1.5量子猫和量子硬币31 1.5.1钟形实验和漏洞31 1.5.2 CHSH游戏32 1.5.3量子柴郡猫猫34
拓扑绝缘体 (TI) 因其独特的物理特性和广阔的应用前景而在光子学和声学领域引起了广泛关注。由于电子学在构建复杂拓扑结构方面具有优势,它最近成为研究各种拓扑现象的一个令人兴奋的领域。在这里,我们利用标准的互补金属氧化物半导体技术在集成电路 (IC) 平台上探索 TI。基于 Su–Schrieffer–Heeger 模型,我们设计了一个完全集成的拓扑电路链,该电路链使用多个电容耦合电感电容谐振器。我们对其物理布局进行了全面的布局后模拟,以观察和评估显着的拓扑特征。我们的结果证明了拓扑边缘状态的存在以及边缘状态对各种缺陷的显着鲁棒性。我们的工作展示了使用 IC 技术研究 TI 的可行性和前景,为未来在可扩展 IC 平台上探索大规模拓扑电子学铺平了道路。
小型餐厅,物理。修订版b 84,241106(r)(2011)问题,安。物理。321,2(2006)Miss and Al。,Nat。 物理。 14,380(2018) 修订版 Lett。 128,12,701(2022)321,2(2006)Miss and Al。,Nat。物理。14,380(2018)修订版Lett。 128,12,701(2022)Lett。128,12,701(2022)
M 膜。引人注目的是,量子引力研究(例如 [ 77 ])为解决这一系列可能阻碍实践进步的理论问题提供了潜在的解决方案。超引力(SuGra)在局部超对称增强中显示出对强耦合相互作用一般理论的完善,其中强关联量子系统的动力学可以有用地映射到膜的涨落上([ 8 ,§ 2],因此工作标题为“M 理论” [ 7 ][ 8 ])和高维 5 膜 [ 8 ,§ 3][ 25 ][ 26 ],位于辅助高维时空内(11D SuGra [ 8 ,§ 1][ 24 ]),这种现象被称为全息对偶 [ 79 ]。例如,量子临界超导体的相变无法用传统的弱耦合(“微扰”)分析来解释,但通过这些引力 M 理论方法至少可以定性地理解 [ 33 ][ 21 ][ 22 ][ 31 ][ 6 ](综述见 [ 50 ][ 79 ][ 48 ][ 32 ])。如果没有一个实际的 M 理论/全息术公式,超越通常但不切实际的宏观重合膜数量的大 N 极限,就不可能得到更精确的定量结果。进一步发展 M 理论的进展停滞不前,但我们可能会注意到,经典超引力中已经存在的一个基本非微扰现象在这种背景下几乎没有受到关注,即“通量量子化”问题。我们发现这一点至关重要:
非平衡系统中的非互易过程正引起整个科学研究领域(从社会学到化学、材料科学和纳米技术)日益增长的兴趣,包括最近的一项研究,即非互易相互作用可能在生命起源(即物质到生命的转变)中发挥了关键作用。最近,一种新型光子纳米光机械超材料结构被证明表现出由光的非互易力驱动的向时间晶体状态的转变。这种晶体是一种新的活性物质形式,活性物质被定义为由非平衡成分组成的物质,它们将能量源转化为功,例如以运动的形式。这种形式的时间晶体活性物质打破了时间平移对称性、遍历性和