MicrofluidX 和 CCRM 合作实现 CAR-T 细胞疗法的端到端生物处理 英国斯蒂夫尼奇和加拿大多伦多,2023 年 1 月 11 日 — MicrofluidX (MFX) 是一家总部位于英国的下一代细胞研究和制造生物反应器供应商,今天宣布与 CCRM 合作,后者是基于再生医学的技术以及细胞和基因疗法的开发和商业化的领导者,通过其下一代平台 Cyto Engine™ 推进慢病毒 (LV) CAR-T 细胞的生产。该项目将满足对更高转导效率、更高转导细胞群体均质性、更短生物处理时间和封闭系统自动化的迫切需求。早期试验(数据可在此处获得)表明,与传统方法相比,MFX 生物反应器中的原代 T 细胞转导效率可提高 5 倍(或病毒消耗量降低 10 倍),均质性提高 2 倍。 “工程慢病毒仍然是 CAR-T 基因编辑最受欢迎的载体,但目前的方法会消耗大量病毒,而细胞产生的载体拷贝数范围很广。这导致人们使用非病毒方法,而这本身也带来了挑战。我们对这次合作感到非常兴奋,因为我们将能够证明事情不必如此。我们平台中的病毒编辑细胞具有高度活力、高度转导和高度同质性,而病毒量仅为以前使用的一小部分,”MicrofluidX 首席执行官 Antoine Espinet 表示。“CCRM 熟练的工艺开发团队一直致力于解决细胞和病毒载体制造中的挑战,包括关闭和自动化流程,我们经常与全球尖端技术提供商合作,”CCRM 总裁兼首席执行官 Michael May 解释道。“与 MicrofluidX 合作的这个项目是一个开发更高效、更低成本的工艺的机会,可以帮助治疗开发人员。当行业能够降低制造成本时,患者将受益。”目前,病毒被设计成载体,将遗传物质带入 T 细胞,增强细胞的特定治疗特性,例如肿瘤检测。然而,这些病毒的生产过程很复杂,因此几微升病毒的成本可能高达数千美元。此外,传统的生物反应器无法精细控制病毒颗粒与细胞的相互作用,导致一部分细胞未受感染,而一部分细胞被多次感染。由于只有受感染的细胞才具有治疗用途,因此需要较长的扩增阶段才能获得可剂量的细胞数量。此外,对重复感染的细胞百分比(载体拷贝数)有严格的放行标准,导致最终产品的产量较低。因此,细胞和基因治疗行业对受控转导平台的需求尚未得到满足,这种平台可以降低病毒消耗,使每个细胞感染率接近一次。此外,对封闭式自动化平台的需求也更为广泛,这种平台可以通过细胞选择、激活、转导、扩增、浓缩和配制,端到端地处理 CAR-T 细胞。MicrofluidX 相信 Cyto Engine™ 平台将满足这些需求,降低细胞治疗制造的成本和时间,并缩短向患者提供救命治疗的时间。通过这个项目,MFX 和 CCRM 将评估 MFX 平台与 CCRM 的流程、员工和设施的能力。反馈将用于进一步改进平台,CCRM 将能够根据其需求设计实验。
图 1 Ortho IL-2 和他克莫司协同增加 %ortho Tregs。用 ortho IL-2R β (ortho Tregs) 转导的 Foxp3 GFP + Tregs 和幼稚 Tcons 与 CD3/CD28 珠一起孵育。按指示添加 Wt IL-2 (1000 IU/ml)、ortho IL-2 (100 000 IU/ml) 和他克莫司 (100 ng/ml),每 2 天补充一次。(A) 共培养细胞的代表性伪彩色图。(B-D) 箱线图显示第 4 天的 Tcons (B)、ortho Tregs (C) 和 ortho Tregs 在总细胞中的比例 (D)。在 2 个独立实验中的 1 个代表性实验中对三个重复孔进行量化。 * < 0.05, ** < 0.01, *** < 0.001;p 值由 Dunnett 检验计算得出,将他克莫司 (−) 组或他克莫司 ( + ) 组中的每列与 PBS 对照 (灰色条) 进行比较。ns,不显著。
摘要 背景 事实证明,使用嵌合抗原受体 (CAR) T 细胞成功靶向乳腺癌 (BC) 等实体瘤具有挑战性,这主要归因于免疫抑制性肿瘤微环境 (TME)。髓系抑制细胞 (MDSC) 抑制 CAR T 细胞在乳腺 TME 内的功能和持久性。为了克服这一挑战,我们开发了靶向肿瘤相关粘蛋白 1 (MUC1) 的 CAR T 细胞,该细胞具有一种新型嵌合共刺激受体,该受体靶向 MDSC 上表达的肿瘤坏死因子相关凋亡诱导配体受体 2 (TR2)。方法 通过将非转导 (NT) 和 TR2.41BB 转导的 T 细胞暴露于重组 TR2 来评估 TR2.41BB 共刺激受体的功能,之后通过 ELISA 和蛋白质印迹测量 NF κ B 的核易位。CAR 的细胞溶解活性。在存在或不存在 MDSC 的情况下,使用 MUC1 + 肿瘤细胞作为靶标,在 5 小时细胞毒性测定中测量了 MUC1/TR2.41BB T 细胞。使用用含或不含 TR2.41BB 的 CAR T 细胞处理的富含 MDSC 的荷瘤小鼠评估体内抗肿瘤活性。结果仅在 TR2.41BB T 细胞中检测到对重组 TR2 的反应性 NF κ B 核易位。MDSC 的存在使 CAR.MUC1 T 细胞对 MUC1 + BC 细胞系的细胞毒潜力降低了 25%。然而,CAR.MUC1 T 细胞上的 TR2.41BB 表达诱导了 MDSC 凋亡,从而恢复了 CAR.MUC1 T 细胞对 MUC1 + BC 系的细胞毒活性。与仅有肿瘤的小鼠相比,MDSC 的存在导致肿瘤生长增加了大约两倍,这是由于血管生成和成纤维细胞积聚增强。与单独使用 CAR.MUC1(469.79±81.46 mm 3 )或 TR2.41BB(434.86±64.25 mm 3 )T 细胞相比,使用 CAR.MUC1.TR2.41BB T 细胞治疗这些富含 MDSC 的肿瘤可有效杀死肿瘤细胞,并显著降低肿瘤生长(24.54±8.55 mm 3 )。CAR.MUC1.TR2.41BB T 细胞还表现出改善的 T 细胞增殖和肿瘤部位的持久性,从而防止转移。我们
在 LV 介导的 ZF-R 递送至 CD3+ 细胞后,MHCI 和 CD5 抑制有效且持久。(A) CD5 基因 mRNA 敲低与 CD5 ZF-R 结合位点 (三角形) 的示意图;颜色越深表示抑制越强。选定的 CD5 ZF-R 以蓝色突出显示。(B) 生成了递送多达两个 ZFR 的 LV 粒子面板,以评估 CD3+ 细胞中的抑制效率。(C) 通过流式细胞术测量 NGFR+/MHCI- 和 NGFR+/CD5- CD3+ 细胞的百分比来量化 CD5 (左) 和 B2M (右) 抑制效率。(D) 通过监测注射到 NXG 小鼠体内 10 周的 NGFR+/MHCI- 和 NGFR+/CD5- CD3+ 细胞来评估 B2M 和 CD5 抑制的持久性。 (E) FACS 图显示注射前(左)和注射后 10 周在血液(中)和脾脏(右)中转导的 CD3+ 细胞中同时出现的 MHCI 和 CD5 抑制。
先天和adapɵve免疫力在脊椎动物中协调一致,以恢复病原体入侵或其他侮辱后恢复体内平衡。与所有体内稳态电路一样,免疫力依赖于可以用细胞或分子项进行分析的传感器,传感器和效果的集成系统。在细胞水平上,T和B淋巴细胞起到了免疫力的作用,该臂是对检测给定损伤的先天免疫细胞转导的信号而动员的。这些先天细胞散布在体内,包括DendriɵC细胞(DC),这是病原体侵袭和肿瘤生长的主要免疫传感器。在分子水平上,DC具有直接感知病原体存在和ssue损伤的受体,并信号控制伴随伴侣或调节编码调节免疫力的e ector蛋白的大量基因。该讲座将集中于了解DC如何整合环境信号以促进对癌症的免疫力,并应用于免疫疗法。
成年干细胞在维持组织稳态和促进寿命方面起着至关重要的作用。在肠道,肺和皮肤中成年上皮干细胞中的复杂组织和存在作为这些细胞的标志。这些细胞在其各自的器官中的特定位置模式突出了它们所居住的利基市场的重要性。细胞外基质(ECM)不仅提供了物理支持,而且还充当各种生化和生物物理信号的储层。我们将考虑这三个上皮的增殖,修复和再生能力的差异,并回顾环境提示如何从利基市场中出现的环境提示调节细胞命运。这些提示是通过机械信号,调节基因表达来转导的,并将我们带到命运支架的概念。了解在各种器官中控制干细胞命运的机制中的类比和差异都可以为复兴治疗和组织工程提供宝贵的见解。
摘要。背景/目标:Kirsten大鼠肉瘤病毒性癌基因同源物(KRAS)数十年来一直不受限制。KRAS主要用于评估抗皮肤生长因子受体(EGFR)抗体药物的适用性。但是,最近出现了各种KRAS抑制剂。不幸的是,KRAS抑制剂尚未有效抵抗大肠癌。因此,本研究旨在确定MRTX1133(一种新型的KRAS G12D抑制剂)与抗EGFR抗体Cetuximab对信号转导和细胞增殖的影响。材料和方法:使用KRAS G12D突变的LS513和KRAS野生型Caco-2人结肠癌细胞系。使用逆转录病毒将KRAS G12D突变稳定地转导至CACO-2细胞中。我们使用CCK-8测定法评估了药物的作用,并使用Western印迹评估了与MAPK途径相关的蛋白质的活性。结果:我们证明了MRTX1133的给药,一种新型的Kras G12d
对于表观遗传汇集筛选,对具有强力霉素诱导的 Cas9 等位基因 (KH2/iCas9;杰克逊实验室,库存编号 029415) 的 8 至 12 周龄小鼠实施安乐死,并对总共 100 万个 Lin – Sca-1 + c-Kit + (LSK) 细胞进行分选并用含有表观遗传 sgRNA 文库的慢病毒进行体外转导 (补充表 1) 14,然后移植到 B6/129 受体小鼠中 (有关更多详细信息,请参阅补充材料)。简而言之,LSK 细胞在 96 孔圆底微孔板中培养,培养基为 StemSpan 无血清扩增培养基(StemCell Technologies),其中添加了 100 ng/mL 重组鼠干细胞因子 (rmSCF)、10 ng/mL rm 白细胞介素-11 (IL-11) 和 5 ng/mL rmFlt3l (R&D Systems),并以低感染复数共转导,慢病毒表达 Tet2 sgRNA (Tet2_e10.1;完整序列见补充表 1) 和表观遗传 sgRNA 文库,以实现 ~50% 的感染效率。24 小时后,将培养的细胞汇集、洗涤
摘要 胶质母细胞瘤 (GBM) 患者的预后较差,而药物向肿瘤的低效输送是治疗的主要障碍。造血干细胞 (HSC) 衍生的髓系细胞能有效地归巢至 GBM 并占肿瘤内细胞的 50%,使其成为非常合适的治疗输送载体。由于髓系细胞在体内普遍存在,我们最近建立了一种含有基质金属蛋白酶 14 (MMP14) 启动子的慢病毒载体,该启动子在肿瘤浸润性髓系细胞中特异性活跃,而不是在其他组织中的髓系细胞中活跃,并导致在 HSC 基因治疗中将转基因特异性地输送到脑转移瘤。在这里,我们使用这种新方法将转化生长因子 β (TGF β ) 作为 GBM 中的关键肿瘤促进因子进行靶向治疗。将转导了表达绿色荧光蛋白 (GFP) 的慢病毒载体的 HSC 移植到接受致死性辐射的受体小鼠体内,随后将 GBM 细胞植入颅内。通过流式细胞术鉴定肿瘤浸润性 HSC 子代。在治疗研究中,将转导了表达可溶性 TGF β 受体 II-Fc 融合蛋白的慢病毒载体的 HSC 移植到小鼠体内,该载体在 MMP14 启动子下启动。将这种 TGF β 阻断疗法与靶向肿瘤辐射、两种疗法的组合和对照进行了比较。量化了肿瘤生长和存活率(通过 t 检验和对数秩检验确定统计学意义)。通过重复肿瘤攻击探测 T 细胞记忆反应。髓系细胞是浸润 GBM 的最丰富的 HSC 衍生群体。 TGF β 阻断性 HSC 基因疗法与放射疗法相结合,与单一疗法和对照组相比,显著降低了肿瘤负担,与对照组和 TGF β 阻断性单一疗法相比,显著延长了生存期。只有联合治疗(25% 的小鼠)才能实现对 GBM 的长期保护,并且肿瘤再次攻击后肿瘤植入部位的 CD8+ T 细胞显著增加。我们展示了针对 GBM 的肿瘤髓系细胞特异性 HSC 基因治疗的临床前原理验证。在临床上,HSC 基因疗法已成功用于非癌性脑部疾病,并且在骨髓保护的背景下,已证明了 HSC 基因疗法对胶质瘤患者的可行性。这表明
摘要 烟粉虱隐种中东-小亚细亚 I (MEAM1) 是一种严重的农业广食性害虫,也是多种植物病毒的载体,在全球范围内造成了重大经济损失。由于缺乏强大的基因编辑工具,烟粉虱的控制受到限制。烟粉虱的胚胎很小,注射起来在技术上具有挑战性,而且注射后死亡率很高,因此很难对其进行基因编辑。我们开发了一种 CRISPR-Cas9 基因编辑方案,该方案基于注射卵黄发生成年雌性而不是胚胎(“ReMOT 控制”)。我们确定了一种卵巢靶向肽配体(“BtKV”),当它与 Cas9 融合并注射到成年雌性体内时,会将核糖核蛋白复合物传导至生殖系,从而实现对后代基因组的有效、可遗传的编辑。与胚胎注射相比,成虫注射很容易,不需要专门的设备。开发易于使用的烟粉虱基因编辑协议将使研究人员能够将反向遗传方法应用于该物种,并将带来针对这种毁灭性害虫的新控制方法。