显着性陈述我们在同一动物队列中获得了功能和结构指标,即传导速度,途径长度,轴突直径和G-RATIO。在大鼠运动皮质中对侧光遗传学刺激后,通过电生理测量获得了触及传导时间。组织的冷冻固定揭示了直径分布中不同亚种群的不同收缩。测得的潜伏期对应于小轴突亚群,直径延伸至用电子显微镜获得的分布模式。扩散-MRI在校正直径加权和收缩后,主要对用组织学获得的较大轴突敏感。不同的模态可能对轴突投影的结构 - 功能关系具有非常不同的敏感性,轴突投影必须在解释中解释。摘要神经纤维的结构功能关系描述了轴突直径,髓磷脂厚度(即G-Ratio)和传导速度之间的经验确定的线性关系。我们研究了通过啮齿动物大脑的call体突出的轴突中不同方式的结构 - 功能关系。我们使用光遗传学诱发的局部场电位(LFP)和基于扩散磁共振成像(DMRI)的拖拉术测量Callosal长度后测量了转基因传导时间。拖拉术遵循与call体中荧光标记的轴突相同的投影。在同一动物中,使用透射电子显微镜(TEM)和DMRI定量轴突直径。TEM的轴突分布表明双峰群体,其中较大的轴突比较小的轴突比较小的轴突与冷冻-TEM进行比较。将收缩校正施加到脱水组织TEM的轴突直径上时,它们与同一动物中获得的DMRI的估计更好地对齐。测量的LFP预测了与轴突分布的主要模式相一致的轴突直径,而由DMRI估计的大轴突预测潜伏期太短,无法通过LFPS测量。不同的方式显示出不同程度的变化,在动物之间较低,表明这种变异在方法论上是主导的 - 不是解剖学上。我们的结果表明,模式与整个轴突直径分布具有不同的灵敏度曲线。因此,在解释方法的度量预测时必须谨慎,因为它可能不代表完整的轴突投影的结构 - 功能关系的子部分。
抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测参考孔口区域的模拟光电电子学测量了预计开放区域(POA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流量除以POA。在闭合阀间隔中,确定并用于性能分析,用于准稳态的背压/流程测试的阀泄漏的等效POA。通过推断的速度梯度(剪切)(剪切)的最大负阴性和正闭合流速度排名的性能。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估用于软闭合的3D印刷原型阀设计(BV3D)表明了降低血栓形成性的潜力。
由于与周围环境的相互作用,开放量子电池(QB)的性能严重限制了反应。因此,保护充电过程免受腐烂的影响对于实现QB非常重要。在这项工作中,我们通过开发由基于QB的开放QB的充电过程来解决此问题,该QB由Qubit Battery和Qubit-Charger组成,每个量子位在独立的腔储层中移动。我们的结果表明,在马尔可夫和非马克维亚动力学中,充电特性,包括充电能量,效率和麦角拷贝,随着充电器和电池量的速度的提高,定期增加。有趣的是,当充电器和电池以较高的速度移动时,充电器的初始能量将完全传递到马尔可夫动力学中的电池中。在这种情况下,可以将总存储的能量作为工作很长时间。我们的发现表明,开放的移动问题系统是强大且可靠的QB,因此使它们成为实验实现的有前途的候选人。
抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测的参考孔口区域的模拟光电电子学测量了预计开放阀区域(POVA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流速除以POVA。对于闭合阀间隔,获得了准稳态的背压/流动测试的数据。性能通过得出的最大负和正闭合流速度排名,通过推断的速度梯度(剪切)证明潜在的临床血栓形成性。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估了用于软闭合和减少血栓形成电位的3-D打印原型阀设计(BV3D)。结论:在瓣膜闭合处的传单几何形状,流速和预测的剪切之间的关系,照亮了假体瓣膜血栓形成的重要来源。对这种关系表示赞赏,并基于我们的实验产生了比较数据,我们实现了瓣膜原型的优化,具有降低的血栓形成性。竞争利益:没有声明。财务披露:这项研究都是所有作者都在无偿的基础上进行的。关键词:假肢;实验室模拟;预计的开放阀区;瓣膜闭合,血栓形成;阀流速;反弹中央消息是阀门关闭流速的衍生实验室指标,提供了一种对阀门模型进行潜在血液损伤的方法。这些结果为先前的临床观察提供了新的见解和机理解释,在该观察中,主动脉和二尖瓣替代物的替代方案的血栓形成潜力和抗凝需求有所不同。这项研究提出了设计和评估新型机械阀模型的前进道路,以进行未来的开发。作为对机械和生物假体瓣膜的多次修改尚未解决与血栓形成和耐用性有关的慢性缺点,因此需要一个新的开发途径,以消除前者的血栓形成,并在后者中延长耐用性。透视假肢机械阀装置会导致血细胞损害。激活凝血级联反应是通过动态阀函数引发的。设计以关注阀门行为为重点的创新可能会降低瓣膜血栓形成潜力。我们的研究表明,阀门设计可以在经验上优化,重点是该阶段。对开放气门性能的重要性重点鼓励了长期存在的偏见,而对识别潜在血栓形成并发症至关重要的闭合相位持续存在。我们的多个数据集可用于挑战这种偏见。本研究比较了三个临床瓣膜和两个实验原型。机械阀的动态运动和衍生的区域流速受到阀几何形状的影响。关注瓣膜闭合动力学可能导致潜在的血栓形成原型阀的发展。实验室实验支持阀区域流速与瓣膜血栓形成潜力有关的假设。
案例 ID 框大小 R λ ˙ E [cu] k max η K η K [cu] IL 11 /η KL /L 11 N p [#] DNS 1.1 512 74 0.4 3 0.015 0.01 41.2 161 10000 DNS 1.2 512 74 0.4 3 0.015 0.05 41.4 160 10000 DNS 1.3 512 74 0.4 3 0.015 0.10 41.3 160 10000 DNS 1.4 512 74 0.4 3 0.015 0.24 41.3 21 10000 DNS 1.5 512 74 0.4 3 0.015 0.50 41.4 16 10000 DNS 2.0 1024 142 0.4 3 0.007 0.11 99.0 332.8 1000 DNS 2.1 1024 219 0.4 3 0.007 0.01 147.8 15.6 1000 DNS 2.2 1024 217 0.4 3 0.007 0.06 147.6 15.7 1000 DNS 2.3 1024 216 0.4 3 0.007 0.11 147.9 15.6 1000 DNS 2.4 1024 212 0.4 3 0.007 0.27 146.8 15.7 1000 DNS 2.5 1024 207 0.4 3 0.007 0.53 145.5 15.8 1000 DNS 3.1 2048 302 0.5 3 0.003 0.01 260.9 13.6 1000 DNS 3.2 2048 299 0.5 3 0.003 0.05 258.2 13.8 1000 DNS 3.3 2048 295 0.5 3 0.003 0.11 254.8 14.0 1000 DNS 3.4 2048 314 0.5 3 0.004 0.26 275.6 20.2 1000 域名3.5 2048 321 0.5 3 0.004 0.53 282.9 14.7 1000 表 2. 每个 DNS 的参数概览。R λ 为泰勒尺度雷诺数,˙ E 为代码单位(cu)中的能量注入率,k max 为最大解析波数,η K 为柯尔莫哥洛夫长度尺度,I = σ u ′ 1 /U 为湍流强度,L 11 为由 E ( κ ) 导出的纵向积分长度尺度,L 为平均探针轨道距离,N p 为虚拟探针的数量。湍流强度 I 通过设置探针平均速度来控制,其中 σ u ′ 1 ≈ 1 为均方根纵向速度波动。
计算流体动力学(CFD)可用于模拟血管血流动力学并分析潜在的治疗选择。CFD已证明对改善患者预后有益。但是,尚未实现CFD的实施CFD。CFD的障碍包括高计算资源,设计模拟设置所需的专业经验以及较长的处理时间。这项研究的目的是探索使用机器学习(ML)以自动和快速回归模型复制常规主动脉CFD。用于训练/测试的数据该模型由对合成生成的3D主动脉形状进行的3,000个CFD模拟组成。这些受试者是由基于实际患者特异性主动脉(n = 67)的统计形状模型(SSM)生成的。对200个测试形状进行的推理导致压力和速度的平均误差分别为6.01%±3.12 SD和3.99%±0.93 SD。我们的基于ML的模型在 * 0.075秒内执行了CFD(比求解器快4,000倍)。这项概念验证研究表明,可以在自动过程中使用ML以更快的速度且准确性地使用ML复制常规血管CFD的结果。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
简介。由于Lorentz的不变性,信息的传播永远无法表达光速。实际上实现此速度的任何粒子都必须是无质量的,并且当能量受到限制时,可以将较低的速度限制放在巨大的颗粒上。在非依赖性系统中有效地有限的速度,相互作用的局部性构成了出现的约束[1]。在这封信中,我们研究了本地相互作用的量子电路中的纠缠速度限制(量子信息的度量)。随着光速,事实证明,达到最大传播纠缠速度的局部统一相互作用(或“门”)具有特殊的形式。在全球量子淬火中存在自然的纠缠速度概念[2-4]。当短程纠缠状态|通常,单位演变为单位进化,(小)子系统Q会热化。足够长的时间后,子系统Q的纠缠(或von Neumann)熵S(Q)将饱和到其平衡值。为了设定舞台,我们将具有局部希尔伯特空间维度Q的一个有限的晶格QUDIT系统置于一个维度上,并将半限定区域Q视为子系统。我们假设统一的进化可以使状态升温| ψ0⟩至有限温度。在达到平衡的途中,Q的von Neumann熵通常在t [5-7]中线性生长:
使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。