该论文项目是视觉行为实习的一部分。该公司旨在生产用于机器人技术的计算机视觉模型,从而帮助机器通过相机眼更好地了解世界。图像具有深度学习模型能够提取的许多功能:可导航区域,深度推理和对象检测。最近进步的示例是筏立体模型[1],从立体声图像推断或完善深度特征,或端到端对象检测模型DETR [2]。自主导航领域可以从这些高级功能中受益,以提出更好的路径计划方法。特别是,要帮助在人拥挤的环境中部署地面机器人,机器人行为不仅必须安全,而且还必须看起来很聪明,以激发信任。本文使用来自速度障碍方法[4]启发的评分函数[4]提出了基于动态窗口方法[3]的局部路径计划者,以便从第一个的灵活性和第二个的长期预期中受益。与DW4DO方法启发的较密切的策略相比,提出的方法可以通过长期将机器人设置在安全轨道上,而不会增加达到位置目标的时间[5]。这提高了机器人应对几个移动障碍并避免参与已经占领的走廊的能力。本论文中产生的代码使用ROS和凉亭模拟器,可在以下GIT页面https://github.com/flocoic oi/fc_thesis以及最小的指令中运行安装并开始快速运行演示。
主要关键词