表现需要精神集中,精神集中是大脑中进行的心理过程,反映在思维过程中。我们的大脑由数十亿个神经元组成,它们收集和传输信号,这些信号源于我们的思想和运动功能。大脑皮层是大脑的一部分,我们的记忆、思想、注意力、意识和意识都基于此。[1] 大脑过程就像计算机的输入输出处理。我们的大脑接收和处理感官数据,并将其转化为思想。这个过程与智商水平、情绪稳定性有关,大脑中的神经元通过练习进行重组。可以说,如果一个人的注意力水平很高,他们的智力水平也可能很高。注意力、专注力、思想和专注力是相互依存的。如果没有其中一个,就很难利用其他的。这项研究试图通过对受访者进行问卷调查来得出结论。由于这项研究一直关注游戏对精神集中能力的影响,因此
备注:检测到低度抄袭 --------------------------------------------------------------------------------------------------
>> 拉古·斯里尼瓦斯博士(物理学早期职业研究员):大家好,我叫拉古。我是贝利奥尔学院和物理系的早期职业研究员。我在美国攻读博士学位之前在新加坡长大,然后于 2020 年来到牛津。自 22 年以来,我一直在学院工作,教授本科生量子力学课程。我的研究重点是实验量子物理学,即操纵单电荷原子或离子。例如,我们的一个应用是量子计算,我们正在尝试开发新技术来更精确地操纵这些原子以及存储在这些原子中的信息。因此,你可以将它们视为在原子内存储零和一。但它与传统计算机的不同之处在于,它们不仅仅是零和一,而且它们可以在我们所谓的叠加态中同时为零和一。我们还开发了不使用激光来纠缠这些离子的新技术,这是我攻读博士学位期间的研究重点。由于我的研究范围已经扩展到量子计算之外,扩展到量子传感,我们可以使用这些离子作为时钟来测量频率和时间的微小差异,以及更基本的量子光学。所以,要记住的是,我是一个实验主义者。所以,90% 到 99% 的时间里,有些东西坏了,你只需要修复它。但有 1% 的时间,一切都正常,你正在获取数据,这就像魔术一样。
在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
我们提出了一个能够实现现实视频综合的模型,给定一系列文本提示。由于计算成本,数量有限的高质量文本视频数据和视频长度的变化,因此从文本中生成视频尤其具有挑战性。为了解决这些问题,我们介绍了一种新的模型,以学习视频表示,该模型将视频压缩为一小部分离散令牌。这个令牌仪会及时使用因果关注,这使其可以与可变长度视频一起使用。为了从文本生成视频令牌,我们使用的是在预先计算的文本令牌上进行的双向蒙版变压器。随后对生成的视频令牌进行了解密以创建实际的视频。为了解决数据问题,我们演示了大量图像文本对的联合培训以及少量的视频文本示例如何导致概括超出视频数据集中的可用内容。与以前的视频生成方法相比,Phanaki可以生成以一系列提示为条件的任意长视频(即时间变量文本或故事)在开放域中。据我们所知,这是第一次研究从开放域时间变量提示中生成视频的论文。此外,与每个框架基线相结合,所提出的视频编码器计算每个视频的代币较少,但会导致更好的时空一致性。
诸如大语言模型(LLM)和视觉语言模型(VLM)之类的基础模型已显示出在许多域中的特定于任务特定模型,几乎没有进行微调。这种新的人工智能范式激发了我们将预训练的VLM应用于文本到视频检索。尽管这些模型无法直接处理视频,但我们研究了一个简单的解决方法:提示VLM提供视频帧的详细描述,以生成可用于语义文本搜索的文本文档。我们表明,这种简单的方法为使用MSR-VTT基准测试提供了零拍视频检索的竞争基线,这表明将基础模型应用于视频检索的任务。我们提供了广泛的消融,以了解系统的哪些部分对于性能很重要,并突出了许多将VLMS应用于视频检索的途径。
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
鉴于通过扩散模型在图像生成中取得的显着成就,研究界表明,对将这些模型扩展到视频生成的兴趣越来越大。视频生成的最新扩散模型主要利用注意层提取时间特征。但是,注意层受其记忆消耗的限制,这随序列的长度四倍增加。在尝试使用扩散模型生成更长的视频序列时,这一限制提出了重大挑战。为了克服这一挑战,我们提出了利用状态空间模型(SSM)。SSM最近由于其线性记忆消耗相对于序列长度而成为可行的替代方案。在实验中,我们首先使用UCF101(视频生成的标准基准)评估了基于SSM的模型。此外,为了调查SSM对更长的视频生成的潜力,我们使用Minerl导航数据集执行了一个实验,将帧数变化为64、200和400。在这些设置中,我们的基于SSM的模型可以为更长的序列节省内存消耗,同时将竞争性的FVD分数保持在基于注意力的模型中。
最近,视频合成的进步引起了极大的关注。视频综合模型(例如AnimateIff和稳定的视频扩散)已经证明了扩散模型在创建动态视觉内容时的实际适用性。Sora的出现进一步介绍了视频生成技术的潜力。尽管有进步,但视频长度的扩展仍受到计算资源的限制。大多数现有的视频综合模型仅限于生成简短的视频剪辑。在本文中,我们提出了一种新型的视频合成模型的调节后方法,称为exvideo。这种方法旨在增强当前视频合成模型的能力,使它们能够在延长的时间持续时间内生成内容,同时产生较低的培训支出。尤其是我们分别设计了跨常见的时间模型体系结构的扩展策略,包括3D综合,时间关注和位置嵌入。为了评估我们提出的调整后方法的功效,我们训练了EXSVD,这是一种基于稳定的视频扩散模型的扩展模型。我们的方法增强了该模型最多生成5倍帧数的能力,仅需在包含40k视频的数据集上进行1.5k GPU小时的培训。重要的是,视频长度的实质性增加不会损害模型的先天概括功能,并且该模型在生成各种样式和决议的视频方面具有优势。我们将公开发布源代码和增强模型1。
我们介绍了Exo2EGO-V,这是一种新颖的以外为中心为中心的基于质量扩散的视频生成方法,用于日常生活熟练的人类活动,其中稀疏4-视图中心的观点在现场周围配置了360°。由于外主和以自我为中心的观点和动态运动和现实世界中日常生活环境之间的显着差异,此任务尤其具有挑战性。为了应对这些挑战,我们首先提出了一种新的基于扩散的多视图外科编码器,以从多视图exentric视频中提取密集的多尺度功能,作为以自我为中心视频的外观条件。然后,我们在提供空间对立的自我中心特征之前设计了一个自以为是至中心的视图翻译,作为对以egipentric视频扩散模型的输入的串联指导。最后,我们将时间关注层引入我们的以自我为中心的视频扩散管道中,以改善温度一致性跨eg中心框架。广泛的实验表明,Exo2EGO-V从EGO-EXO4D数据集中显着超过SOTA方法,而LPIP的平均为35%。我们的代码和模型将在https://github.com/showlab/exo2ego-v上提供。