对可用的 TG 210 数据进行模拟和统计模拟。 • 2020 年 4 月 - 2021 年 12 月:对 TG 210 研究中对照选择对统计功效和计算处理效果的影响进行统计分析和模拟。 • 2020 年 10 月:与 VMG-Eco 进行讨论 • 2020 年 11 月:领导权从欧盟委员会移交给美国 • 2022-2023 年:起草详细审查文件,并在必要时开发概念验证,描述在水生生态毒性测试中使用单一对照之前需要什么;考虑所有实验室是否有必要维护自己的历史数据库以支持使用单一对照。 • 2023-2024 年:DRP 的 WNT 评论轮次; • 2025 年:WNT 批准。JM WNT 专家组 VMG-Eco 的附属机构
认知活力报告® 是由阿尔茨海默氏症药物发现基金会 (ADDF) 的神经科学家撰写的报告。这些科学报告包括对药物、在研药物、药物靶点、补充剂、营养保健品、食品/饮料、非药物干预和风险因素的分析。神经科学家评估对大脑健康的潜在益处(或危害),以及可能影响大脑健康的与年龄相关的健康问题(例如心血管疾病、癌症、糖尿病/代谢综合征)。此外,这些报告还包括对安全性数据的评估,这些数据来自临床试验(如果有)和临床前模型。Notum 抑制剂证据摘要 Notum 是 Wnt 的负调节剂,因此抑制剂可能对 Wnt 降低的疾病(例如阿尔茨海默氏症和骨质疏松症)有益,但会加剧 Wnt 升高的疾病(例如癌症和纤维化)。
许多治疗方法可用于肝癌,但手术仍然是最常见的。尽管对肝癌的根本切除术,但可切除的肝癌患者仍然存在许多问题,例如术后肝癌转移,高复发率和预后不良。不适合移植或局部治疗失败的高级HCC患者更有可能接受一线药物(例如索拉非尼和兰氏尼)[3]。但是,耐药性限制了它们的使用。研究表明,索拉非尼仅在35%-43%的患者中有效,大多数患者在6个月内手和脚上的腹泻和皮肤反应[4]。因此,找到具有治愈作用和最小副作用的癌症治疗是肝癌治疗未来的重要新方向。
摘要:牙科的主要目标之一是损坏后牙齿结构的自然保存。这尤其涉及到牙本质和果肉的影响,在牙本质和果肉中造成了牙本质细胞生存受到危害。这会激活纸浆干细胞和新的Odontoblast样细胞的区分,并伴随着Wnt信号的增加。我们的小组表明,GSK3的小分子抑制剂的递送刺激牙齿腔中的Wnt /β-蛋白蛋白信号传导并带有果肉暴露,并导致牙本质修复的有效促进。小分子是一个很好的治疗选择,因为它们可以通过细胞膜并达到靶标。在这里,我们研究了一系列非GSK3靶标小分子,这些分子目前用于基于其他激酶抑制性能来治疗各种医疗状况。我们分析了这些药物通过o or target抑制GSK3刺激Wnt信号传导活性的能力。我们的结果表明,C -MET抑制剂具有刺激低浓度下牙纸浆细胞中Wnt /β -catenin途径的能力。这项工作是牙科药物重新利用的一个例子,并建议在体内对候选药物进行天然牙本质修复进行测试。这种方法绕过了新型药物发现通常需要的高度经济和时间投资。
摘要 Wnt 信号在发育、体内平衡和肿瘤发生中起着重要作用。在结直肠癌和肝细胞癌中发现了激活 Wnt 信号的 β -catenin 突变。然而,β -catenin 野生型和突变型的动态尚未完全了解。在这里,我们在结直肠癌细胞系中对内源性 β -catenin 的荧光标记等位基因进行了基因组工程改造。野生型和致癌突变等位基因用不同的荧光蛋白标记,从而能够在同一细胞中分析这两种变体。我们使用免疫沉淀、免疫荧光和荧光相关光谱法分析了两种 β -catenin 等位基因的特性,揭示了截然不同的生物物理特性。此外,通过用 GSK3 β 抑制剂或截短 APC 突变治疗激活 Wnt 信号,可以调节野生型等位基因,使其模仿突变 β -catenin 等位基因的特性。一步标记策略展示了如何利用基因组工程对不同的遗传变异进行并行功能分析。
摘要:全世界癌症,结直肠癌(CRC)导致的第二个死亡原因是一个主要的公共卫生问题。因此,发现新的治疗靶标是必不可少的。假酶PTK7介入Wnt/β-catenin途径信号传导的调节,部分地通过激酶域依赖性与β-catenin蛋白的相互作用。ptk7在CRC中过表达;与转移性发育和非转移性患者存活降低相关的事件。此外,在CRC中鉴定出了许多改变,从而通过β-catenin积累诱导Wnt/β-catenin途径的组成型激活。因此,我们认为靶向PTK7/β-catenin相互作用可能与未来的药物开发有关。在这项研究中,我们开发了一种纳米伯特TM筛选测定法,概括了PTK7和β-catenin之间的相互作用,以鉴定能够破坏这种蛋白质蛋白质相互作用的化合物。高吞吐量筛选使我们能够鉴定针对Wnt途径信号传导的小分子抑制剂,并在含有PTK7下游的CRC细胞中诱导抗β-catenin或APC突变的CRC细胞中引起抗增殖作用。因此,对PTK7/β-catenin相互作用的抑制作用可以代表一种新的治疗策略,以抑制Wnt信号传导途径的细胞生长。此外,尽管其酪氨酸激酶结构域缺乏酶促活性,但针对PTK7激酶结构域依赖性功能似乎对进一步的治疗性发育感到有意义。
摘要背景:卵巢癌 (OC) 是一种常见的妇科恶性肿瘤。据报道,SHC-衔接蛋白 (SHC) 结合和纺锤体相关蛋白 1 (SHCBP1) 的异常表达在各种癌症中都至关重要,而其在 OC 中的作用尚不清楚。在这里,我们研究了 SHCBP1 在 OC 中的作用。方法:使用生物信息学分析 SHCBP1 在 OC 中的表达和 OC 患者的生存概率。通过细胞计数试剂盒 8 (CCK-8) 和菌落形成来评估细胞生长。使用伤口愈合和 Transwell 测定检查细胞运动能力。通过球体形成试验评估 OC 细胞的干性。使用免疫印迹分析与无翼 (Wnt)/β-catenin 轴相关的关键因素。SHCBP1 在 OC 中的表达升高,并且 SHCBP1 与 OC 患者的生存概率相关。结果:沉默 SHCBP1 可抑制 SKOV3 和 A2780 细胞的增殖、迁移和侵袭。此外,敲低 SHCBP1 会损害 OC 细胞的干性。此外,SHCBP1 敲低会抑制 OC 细胞中的 Wnt/β-catenin 轴。我们的研究结果表明,沉默 SHCBP1 通过抑制 Wnt/β-catenin 轴来抑制 OC 细胞的生长、运动和干性。结论:OC 中 SHCBP1 的丰度增强。沉默 SHCBP1 通过抑制 Wnt/β-catenin 通路来抑制 OC 细胞的增殖、迁移、侵袭和干性。这些结果表明 SHCBP1 可能是 OC 中的一个潜在靶点。
摘要。髓母细胞瘤 (MB) 是最常见的儿童恶性后颅窝肿瘤。最近的遗传、表观遗传和转录组分析将 MB 分为三个亚组,即无翅型 (WNT)、Sonic Hedgehog (SHH) 和非 WNT/非 SHH(最初称为第 3 组和第 4 组),具有不同的患者特征和预后。WNT 是最不常见但预后最好的亚组,其特征是核 β-catenin 表达、Catenin beta-1 (CTNNB1) 突变和 6 号染色体单体性。SHH 肿瘤含有 GLI1、GLI2、SUFU 和 PTCH1 基因的突变和改变,这些基因组成性激活 SHH 通路。最初,TP53 基因改变和/或 MYC 扩增的存在被认为是最可靠的预后因素。然而,最近的分子分析将 SHH MB 细分为几种亚型,这些亚型具有不同的特征,例如年龄、TP53 突变、MYC 扩增、转移的存在、TERT 启动子改变、PTEN 丢失和其他染色体改变以及 SHH 通路相关基因突变。第三个非 WNT/非 SHH MB(组 3/4)亚组在遗传上高度异质性,并显示出几种分子模式,包括 MYC 和 OTX2 扩增、GFI1B 激活、KBTBD4 突变、GFI1 重排、PRDM6 增强子劫持、KDM6A 突变、LCA 组织学、10 号染色体丢失、17q 等染色体、SNCAIP 重复和 CDK6 扩增。然而,基于
化学疗法药物5-氟尿嘧啶(5-FU)是许多癌症的主要治疗方法。但是,其功效受到化学抗性的限制。在这里,我们研究了肺部和乳腺癌细胞中5-FU的耐药机制和逆转策略。使用多种5-FU的肺癌和乳腺癌细胞模型,我们揭示了不同癌症类型之间5-FU耐药性的差异性细胞和分子特征。我们进一步揭示了具有5-FU电阻的免疫相关过程,Notch和Wnt信号的含义。在肺癌中,Wnt/β-catenin信号传导的激活促进了抗药性,并阻止了该信号的耐药性,使耐药细胞重新敏感到5-FU处理。 我们的研究不仅揭示了不同癌症的5-FU耐药性的差异特征和机制,而且还提出了针对这种抵抗力的潜在策略。在肺癌中,Wnt/β-catenin信号传导的激活促进了抗药性,并阻止了该信号的耐药性,使耐药细胞重新敏感到5-FU处理。我们的研究不仅揭示了不同癌症的5-FU耐药性的差异特征和机制,而且还提出了针对这种抵抗力的潜在策略。
摘要 COVID-19 大流行催化了包括 BNT162b2 在内的 mRNA 疫苗的快速开发和分发,以应对该疾病。人们开始担心这些疫苗对神经发育的潜在影响,尤其是对孕妇及其后代等易感群体的影响。本研究旨在研究大鼠模型中 WNT 的基因表达、脑源性神经营养因子 (BDNF) 水平、特定细胞因子、m-TOR 表达、神经病理学和自闭症相关的神经行为结果。怀孕大鼠在妊娠期间接种了 COVID-19 mRNA BNT162b2 疫苗。随后对雄性和雌性后代的评估包括自闭症样行为、神经元计数和运动表现。应用分子技术量化脑组织样本中的 WNT 和 m-TOR 基因表达、BDNF 水平和特定细胞因子。然后将研究结果与现有文献进行背景化,以确定潜在的机制。我们的研究结果表明,mRNA BNT162b2 疫苗显著改变了雄性和雌性大鼠的 WNT 基因表达和 BDNF 水平,表明对关键的神经发育途径产生了深远影响。值得注意的是,雄性大鼠表现出明显的自闭症样行为,其特征是社交互动明显减少和重复行为模式。此外,关键大脑区域的神经元数量大幅减少,表明潜在的神经退化或神经发育改变。雄性大鼠的运动能力也受损,表现为协调性和敏捷性下降。我们的研究深入了解了 COVID-19 mRNA BNT162b2 疫苗对大鼠模型中 WNT 基因表达、BDNF 水平和某些神经发育标志物的影响。需要进行更广泛的研究来证实这些观察结果并探索确切的机制。全面了解 COVID-19 疫苗接种的风险和回报,尤其是在怀孕期间,仍然至关重要。