我们之前表明,诱导一种高度保守的脑富集 lncRNA(称为 Fos 下游转录本 (FosDT, MRAK159688))可通过与 REST(RE1 沉默转录因子)相关染色质修饰蛋白相互作用促进缺血性脑损伤。2,11 FosDT 基因与 Fos 基因同源,Fos 基因是细胞应激的标志物。12 FosDT 和 Fos 基因位于大鼠 6 号染色体(人类为 14 号染色体)上约 240 000 个核苷酸的基因沙漠内。11 我们目前使用通过 CRISPR-Cas9 基因组编辑开发的 FosDT −/− 大鼠评估了 FosDT 在大脑发育和缺血后结果中的功能意义。我们还通过分析另一个实验室的 FosDT 在缺血性脑损伤中的作用来评估我们数据的可重复性。我们进一步对短暂性局部缺血后的 FosDT −/− 和 FosDT +/+ 大鼠进行了 RNA 测序分析,以了解 FosDT 在缺血性脑中的机制含义。
来自 1 美国印第安纳州印第安纳波利斯印第安纳大学医学院儿科系 Herman B. Wells 儿科研究中心和 2 糖尿病与代谢疾病中心;3 美国马里兰州罗克维尔国立卫生研究院国家转化科学促进中心;4 美国纽约州纽约市西奈山伊坎医学院伊坎基因组学和多尺度生物学研究所遗传学和基因组科学系;5 美国康涅狄格州斯坦福德西奈山大学 Sema4 项目;6 美国印第安纳州印第安纳波利斯印第安纳大学医学院药理学和毒理学系、7 斯塔克神经科学研究所、8 生物化学和分子生物学系和 9 解剖学、细胞生物学和生理学系
本文介绍了亚音速下振荡半球形炮塔下游尾流响应的实验研究。振荡炮塔由安装在铝制矩形板上的炮塔外壳组成。炮塔组件设计为使炮塔以单一频率沿翼展方向振荡,与主要尾流模式的主频率一致。流体的基于共振的气动弹性响应导致炮塔沿翼展方向受迫振荡。安装在炮塔组件不同位置的多个加速度计用于测量局部位移。结果表明,炮塔以固定频率振荡,振荡频率范围为 0.3 至 0.55 马赫数,振荡幅度约为 1 毫米。在炮塔下游的隧道壁上放置了几个非稳定压力传感器,用于研究振荡炮塔的尾流响应。研究发现,与固定炮塔下游的尾流相比,振荡炮塔的压力波动能量较小,尾流在翼展方向上更加有序。
背景:肺癌是一种高度恶性疾病,主要是由于其转移倾向。AMP激活的蛋白激酶(AMPK)是肝激酶B1(LKB1)的主要下游效应子(LKB1),策划了广泛的分子靶标,从而限制了肿瘤侵袭和转移。并行,RNA结合蛋白RBMS3(RNA结合基序,单链相互作用蛋白3)在上皮 - 间质转变(EMT)中起关键作用,这是肿瘤发生中的关键过程。因此,我们的研究旨在阐明RBMS3作为介体在LKB1/AMPK抑制肿瘤侵袭和转移中的重要作用。方法:我们分别研究了利用免疫组织化学和TCGA-LUAD数据的肺癌组织中RBMS3和LKB1之间的表达和相关性。还分析了RBMS3与临床病理特征与肺癌预后之间的关系。实时研究了RBMS3在肺癌细胞增殖,侵袭和迁移中的功能。此外,我们研究了AMPK激动剂和抑制剂的作用,探索RBMS3在AMPK诱导的抑制肺癌侵袭和迁移中的介导作用。结果:IHC和TCGA数据均显示RBMS3在肺癌中的表达低。此外,我们发现RBMS3的低表达与肺癌的组织学等级,临床阶段和N阶段呈正相关。此外,较低的RBMS3表达与总生存率差有关。COX回归分析表明,RBMS3是肺癌患者的独立预后因素。COX回归分析表明,RBMS3是肺癌患者的独立预后因素。体外实验证实了RBMS3抑制肺癌细胞的增殖,侵袭和迁移。此外,我们的发现表明,RBMS3在介导AMPK对肺癌侵袭和迁移的抑制作用中起着至关重要的作用。结论:我们的研究强调了一种新的机制,通过促进RBMS3表达,LKB1/AMPK途径激活抑制肺癌的侵袭和转移,从而在开发创新的肺癌疗法方面提供了见解。
大坝溃坝和蓄水突然泄洪的情形必须随 EAP 提供。提供用于制定下游淹没地图的所有支持方法,包括:所用方法、所作假设、所用建模软件(如果有)、模型的电子文件、相关输入、创建日期、图例表、指南针、地形轮廓、比例大小和方向箭头。下游淹没地图应描绘晴天溃坝(模拟水库在正常水池高度时管道故障)和雨天溃坝(模拟 SDF 通过期间在最高水池高度时发生的溢流故障)淹没区。这两种情形可以使用不同的颜色显示在同一张地图或一组地图上。下游淹没地图应使用工程计算机模型(例如 HEC-RAS 非稳定模型或其他二维水力分析模型等)制定,如 FEMA P-946“与大坝事故和溃坝相关的洪水风险淹没地图绘制联邦指南”中所述。 HEC-RAS 模型可从美国陆军工程兵团免费获取:https://www.hec.usace.army.mil/software/hec-ras/ 。下游淹没地图必须描绘出被淹没的区域,并叠加在最近的航拍图像或地形图上(包括标有两英尺间隔的地形轮廓),清晰显示所有受影响的建筑物、道路、铁路和其他知名特征(位于淹没区范围内),并在居民/企业/道路/处于危险中的基础设施上分别引用(表 5.1)。问:我的下游淹没地图的下游界限应该在哪里?答:缺口淹没区分析的下游界限应该是最下游
本谅解备忘录(“MOU”)由 [ MCP 名称 ](“MCP ”)与 [ 一方名称 ],即 [ 另一方描述 ](“DMC 州计划县”)签订,自 [ 日期 ] 起生效(“生效日期”)。[如果 MCP 有分包商或下游分包商安排将与实施本 MOU 相关的部分或全部责任委托给 Knox-Keene 许可的医疗保健服务计划,则必须将该分包商或下游分包商添加为本 MOU 的明确当事方,并在本 MOU 中指明其承担本文所述的适用于分包商或下游分包商的责任。]DMC 州计划县、MCP 以及 MCP 的相关分包商和/或下游分包商在本文中可称为“一方”,统称为“各方”。
目的:虽然近几十年来供应链管理 (SCM) 实践的应用日益广泛,但对石油下游企业供应链管理实践的研究仍然非常有限。本研究探讨了 SCM 实践对石油下游企业运营绩效的影响。研究设计:调查。研究地点和持续时间:该研究于 2019 年 1 月至 2020 年 2 月在加纳进行。方法:本研究开发并测试了一个研究模型,该模型提出战略供应商合作伙伴关系、客户关系、供应链信息管理和延迟显著影响石油下游企业的运营绩效。研究数据来自对 150 家在加纳石油下游运营的公司的调查。
2023 年 5 月 22 日通过电子邮件发送 Camille Calimlim Touton,专员 美国垦务局 1849 C Street NW 华盛顿特区 20240 尊敬的 Touton 专员: 科罗拉多河流域各州 亚利桑那州、加利福尼亚州和内华达州(下游各州)的代表已达成协议,到 2026 年底在下游流域至少额外保护 300 万英亩英尺 (MAF) 的科罗拉多河水,到 2024 年底至少保护其中的 1.5 MAF(下游流域计划)。我们要求对下游流域计划进行全面分析,作为垦务局(垦务局)上个月发布的近期科罗拉多河运营补充环境影响声明草案(SEIS 草案)中的一项行动替代方案。在整个过程中,正如上个月公布 SEIS 草案时所确认的那样,下游各州代表始终致力于与垦务局合作,制定符合 SEIS 草案目的和需求的协议,以“修改格伦峡谷和胡佛大坝的运营指南,以应对流域内历史性干旱、历史性低水库和低径流条件”(SEIS 草案,第 1.3 节)。我们认为,这一拟议的行动方案既符合 SEIS 草案的目的和需求,而且经过分析,其效果与垦务局最初提出的行动方案相同或更好。下游流域计划不需要任何单方面行使联邦权力来实现这些保护水平。下游流域计划的条款如下:
1 弗莱堡大学医学中心输血医学和基因治疗研究所,Breisacherstr. 115, 79106 弗莱堡,德国 2 弗莱堡大学医学中心慢性免疫缺陷中心,Breisacherstr. 115, 79106 弗莱堡,德国 3 弗莱堡大学医学中心免疫缺陷研究所,Breisacherstr. 115,79106 弗莱堡,德国 4 CIBSS-弗莱堡大学综合生物信号研究中心,79106 弗莱堡,德国 5 弗莱堡大学医学院,79106 弗莱堡,德国 6 RESIST-汉诺威医学院卓越集群 2155,弗莱堡卫星中心,弗莱堡,德国 7 DZIF-德国感染研究中心,弗莱堡卫星中心,弗莱堡,德国 * 通讯地址:claudio.mussolino@uniklinik-freiburg.de;电话:+49-761-270-77738
最近,在广泛的图形挖掘任务中深入研究并应用了预训练和微调图神经网络的范式。它的成功通常是对训练和下游数据集之间的结构一致性的表现,但是,在许多现实世界中,这并不成立。现有的作品表明,在使用香草微调策略时,预训练和下游图之间的结构差异显着限制了转移性。这种差异导致模型过度适应预训练图,并在捕获下游图的结构特性时造成困难。在本文中,我们将结构差异的基本原因确定为前训练和下游图之间生成模式的差异。此外,我们建议G-T Uning保留下游图的生成模式。给定下游图G,核心思想是调整预训练的GNN,以便它可以重建G graphon w的生成模式。但是,已知Graphon的确切重新构造在计算上是昂贵的。为了克服这一挑战,我们提供了一个理论分析,该分析建立了一组替代图形子的存在,称为任何给定的Graphon。通过利用这些图形碱基的线性组合,我们可以有效地近似w。这一理论发现构成了我们模型的基础,因为它可以有效地学习图形碱基及其相关系数。与现有的al-gorithm相比,G-T Uning在7个内域和7个室外转移学习实验中表现出一致的性能提高。