疫苗是最有价值的人类健康技术之一。从18世纪的爱德华·詹纳(Edward Jenner)对Cowpox进行的Variolation实验,再到乔纳斯·萨克(Jonas Salk)开发脊髓灰质炎的整个病原体疫苗的努力,疫苗研究产生了一些历史上最重要的医疗突破。疫苗刺激针对特定病原体的免疫反应,它必须包含与该病原体有关的抗原。第一代疫苗通常由活或灭活的整个病原体组成。尽管其历史上的成功并广泛采用,但整个病原体疫苗在包含无关紧要的和潜在有害的病原体成分时仍引起了安全问题。他们也可以复制或恢复为致病形式(1)。亚基疫苗仅包含刺激免疫反应所需的病原体的最小成分,例如重组蛋白。这些技术改善了疫苗的安全性(2)。然而,在刺激免疫反应时,亚基疫苗本质上比整个病原体疫苗的效力较低。由于这种限制,它们通常包含额外的免疫刺激分子(称为佐剂)来发展保护性免疫(2)。其他最近的疫苗技术包括病毒载体和基于核酸的疫苗,该疫苗编码致病性抗原
摘要 丙型肝炎病毒 (HCV) 是非甲非乙型肝炎的最重要病原体,也是慢性肝病和肝细胞癌的主要原因。研制有效的疫苗是预防感染最实用的方法,但 HCV 感染是否会在宿主体内引发保护性免疫尚不清楚。尝试用慢性感染患者的血浆在体外中和 HCV,并通过接种八只血清阴性黑猩猩来评估残留传染性。HCV 的来源是从一名患者在移植后非甲非乙型肝炎急性期获得的血浆,该血浆之前已在黑猩猩中测定过传染性。在原发性感染开始 2 年后从同一患者获得的血浆中实现了中和,但在 11 年后获得的血浆中未能实现中和,尽管两种血浆都含有针对非结构和结构(包括包膜)HCV 蛋白的抗体。对同一患者连续病毒分离株的分析表明,早在感染 2 年后,遗传分化就已显著。然而,感染 2 年后从患者身上分离出的 HCV 与从接种了急性期病毒的黑猩猩身上分离出的 HCV 具有惊人的序列相似性,这表明新毒株的祖先在 2 年前就已经存在。这一证据,加上从接受相同接种物的黑猩猩身上分离出的 HCV 的不同序列,证实了 HCV 在体内以准种的形式存在。这些结果提供了体内实验证据,表明 HCV 感染会在人类中引发中和抗体反应,但表明这种抗体是分离株特异性的。这一结果引起了人们对开发广泛反应的 HCV 疫苗的担忧。
结果和讨论:在总共617个共培养Calli中,21(3.4%)再生芽表现出三种不同的表型:白化,嵌合和浅绿色;与野生型非转化的再生芽相比。在白化芽中,总叶绿素含量大大降低,并且在嵌合芽中显着降低。在六个CAS9基因确认的再生芽中,两种芽表现出由于插入/缺失(Indels)和ACPDS靶点位置和周围的基于替代的突变而引起的白化表型。深度扩增子测序显示两个SGRNA之间的indel频率显着,范围从1.2%到63.4%,以及53.4%的替代频率。ACPDS基因的突变产生了可检测到的白化病表型,因此确定了ACPDS基因的成功编辑。这是第一次在洋葱中成功建立了CRISPR/CAS9介导的基因组编辑方案,而ACPD基因作为一个例子。这项研究将为研究人员提供进一步的洋葱基础研究和应用研究的必要动力。
全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
抽象的碳酸酐酶12被认为是癌细胞中的致癌和酸性微环境因子。为了验证组胺信号作为抗癌信号的作用,我们确定了CA12及其相关的碳酸氢盐转运蛋白的作用。在这项研究中,组胺刺激介导了CA12在肺癌细胞中的错误定位。组胺受体激活介导的Ca12内吞作用和pH值通过CAMKII抑制恢复。CA12相关的AE2表达增强了,而NBCN1表达及其活性通过组胺刺激降低。组胺受体激活介导的酸化是通过内部化的CA12和NBCN1诱导的,同时通过增强的AE2表达来增加碳酸氢盐外排。抑制bafilomycin对蛋白质运输的抑制作用恢复了Ca12和AE2局部性,并减少了细胞酸中毒。因此,我们验证了组胺刺激诱导的酸性场景 - 揭示了CA12及其相关的碳酸氢盐转运蛋白在肺癌细胞中的运输及其相关的碳酸氢盐转运蛋白及其失调的pH调节可能与组胺信号信号介导的介导的抗癌抗癌过程有关。
我们已经使用阳离子脂质体来促进原代和培养细胞类型的腺相关病毒(AAV)质粒转染。AAV质粒DNA显示出比标准质粒的复合物高的表达水平。此外,观察到典型的脂质体介导的瞬时表达与标准质粒的转染所证明的瞬态表达不同,该基因的长期表达(> 30天)。染色体DNA的南部分析进一步证实了长期表达是由于AAV质粒转染组中的转基因而不是在标准质粒转染组中引起的。AAV质粒 - 脂质体复合物诱导的转基因表达水平与重组AAV转导相当。原发性乳房,卵巢和肺部肿瘤细胞可与AAV质粒DNA-脂质体复合物转染。转染的原发性和培养的肿瘤细胞即使在致命照射后也能够表达转基因产物。在正常人类外周血的新鲜分离的CD3+,CD4+和CD8+T细胞中也观察到了高级基因表达。转染效率范围为10%至501%,如白细胞介素2转染的细胞中细胞内白细胞介素-2水平评估。在原发性肿瘤和淋巴样细胞中表达转基因的能力可以应用于肿瘤疫苗研究和方案,最终可以对癌症和艾滋病中细胞免疫反应的高度特异性调节。
膀胱癌是尿液系统中最常见的恶性疾病之一,对生活的寿命和生活质量显着影响(1)。肌肉侵入性膀胱癌(MIBC)由于其对转移的侵略性和倾向而构成了实质性的困难(2)。目前,MIBC的标准处理(T2-T4AN0M0)涉及至少三个铂基化的新辅助化疗(NAC),然后进行自由基膀胱切除术(RC)(3,4)。尽管采用了这种密集的治疗策略(NAC + RC),但超过40%的MIBC患者在3年内复发或死亡率(3,4)。这强调了对创新的手术前治疗策略的关键需求,以增强患者的预后。免疫检查点抑制剂(ICI),包括针对程序性细胞死亡蛋白-1(PD-1)和程序性死亡配体1(PD-L1)的药物,最近证明了患有局部晚期和转移性膀胱癌患者的生存益处有希望的生存益处(5,6)。我们先前的研究表明,将吉西他滨和顺铂(GC)方案与免疫疗法相结合,显着提高了病理完整反应率(PCRR)和病理下降率(PDR),同时保持有利的安全性促进(1)。人表皮生长因子受体2(HER2)的过表达与膀胱肿瘤的发育和进展密切相关(7)。因此,HER2靶向疗法,尤其是抗体 - 药物缀合物(ADC),例如disitamab vedotin(RC48),在治疗局部晚期或转移性膀胱癌(8-10)方面表现出了效率和安全性,引起了人们的注意(8-10)。最近的研究表明,将RC48与免疫疗法相结合可以增强治疗结果(11,12)。我们假设,由于涉及的特定作用机制,RC48与PD-1抑制剂的组合将优于传统的GC方案。rc48,作为一种抗体 - 药物结合物,特定靶向表达HER2的癌细胞,提供更有定向的治疗方法并最大程度地减少脱靶效应,这可能会导致更高的效率和改善的安全性(9)。此外,与PD-1抑制剂的组合可以通过促进更强的免疫介导的反应来进一步增强抗肿瘤活性(12)。但是,
重金属污染由于其持续性,更高的毒性和顽固性而成为全球严重关注的问题。这些有毒的金属威胁着环境的稳定性和所有生物的健康。重金属还通过食用受污染的食物并对人类健康造成有毒作用,进入人类食物链。因此,必须对HMS污染的土壤进行修复,并且需要在更高的优先级上解决。使用微生物被认为是打击HMS不利影响的有前途的方法。微生物有助于恢复恶化环境的自然状况,并具有长期的环境影响。微生物修复可防止HMS的浸出和动员,并且还使HMS的提取变得简单。因此,在这种情况下,最近的技术进步允许将生物修复用作补救污染土壤的必要方法。微生物使用不同的机制,包括生物呼吸,生物蓄积,生物含量,生物转化,生物胆碱化和生物矿化,以减轻HMS的影响。因此,在此评论中,在此综述中保持有毒的HMS探讨细菌,真菌和藻类在污染土壤的生物修复中的作用。本综述还讨论了可用于提高微生物效率以补救HMS污染土壤的各种方法。它还强调了在未来的研究计划中必须解决的不同研究差距,以改善生物修复效率。
组织Cu,Fe和Zn作为实验四甲甲基脑病的主要决定因素。生命科学, /3:897(1973)。24。Packer,L。和Jacobs,E。E。:磷酸化与线粒体呼吸链的末端段的耦合。Biochim。Biphys。 Acta,57:37 I(1962)。 25。 Patel,A。J.,Michaelson,I。 A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。 J. Neurochem。,22:581(1974)。 26。 Patel,A。J.,Michaelson,I。 A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。 J. Neurochem。,22:591(1974)。 27。 Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。 Acta Neuropathol。,6:266(1966)。 28。 Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。 Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Biphys。Acta,57:37 I(1962)。25。Patel,A。J.,Michaelson,I。A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。 J. Neurochem。,22:581(1974)。 26。 Patel,A。J.,Michaelson,I。 A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。 J. Neurochem。,22:591(1974)。 27。 Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。 Acta Neuropathol。,6:266(1966)。 28。 Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。 Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。J.Neurochem。,22:581(1974)。26。Patel,A。J.,Michaelson,I。A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。J.Neurochem。,22:591(1974)。27。Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。Acta Neuropathol。,6:266(1966)。28。Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Cancer Res。,5:21(1945)。29。Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。EXP。mal。Pathol。,14:386(1971)。30。Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。JO:38(1967)。31。Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Scott,K。M.,Hwang,K。M.,Jurkowitz。xxi!l。M.和Brierly,G。P。:通过心脏线粒体运输离子。铅对线粒体反应的影响。
在水稻培养中,半枯萎和粘性质地的特征分别是优化产量潜力和晶粒质量的关键。Xiangdaowan(XDW)大米以其出色的芳香特性而闻名,由于其高的身材和高淀粉糖含量而面临挑战,导致住宿耐药性不佳和次优烹饪属性。为了解决这些问题,我们采用了CRISPR/CAS9技术来精确地编辑XDW大米中的SD1和WX基因,从而发展具有所需半昏迷和麸质特征的稳定的遗传纯合线。SD1-WX突变型线表现出降低的gibberellin含量,植物高度和淀粉糖含量,同时保持了几乎不会改变发芽率和其他关键的农艺性状。重要的是,我们的研究表明,外源性GA 3的应用通过补偿内源性Gibberellin的缺乏有效地促进了生长。基于此,开发了半昏昏欲睡的精英大米(Oryza sativa L.)线,对大多数农艺性状没有太大影响。此外,比较转录组分析揭示了差异表达的基因(DEG)主要与膜的锚定成分,过氧化氢分解代谢酶分解代谢酶活性,过氧化物酶活性,萜烯合酶活性和寄生虫相关。此外,将二萜类化合物的生物合成催化为gibberellins的生物合成富集并显着下调。这项全面的研究提供了一种有效的方法,可以同时提高水稻植物的身高和质量,为耐药和高质量的水稻品种的发展铺平了道路。