CRISPR-Cas 介导的 DNA 干扰通常依赖于外来遗传物质的序列特异性结合和核酸降解。IV-A 型 CRISPR-Cas 系统与这种一般机制不同,它使用不依赖核酸酶的干扰途径来抑制基因表达,以进行基因调控和质粒竞争。为了了解 IV-A 型系统相关的效应复合物如何实现这种干扰,我们确定了两种进化上不同的 IV-A 型复合物(IV-A1 型和 IV-A3 型)的低温电子显微镜结构,它们在存在和不存在 IV-A 型特征 DinG 效应解旋酶的情况下与同源 DNA 靶标结合。这些结构揭示了效应复合物如何识别原间隔区相邻基序和靶链 DNA 以形成 R 环结构。此外,我们揭示了 IV-A1 型和 IV-A3 型在 DNA 相互作用和允许反式募集 DinG 的结构基序方面的差异。我们的研究提供了 IV-A 型介导的 DNA 干扰的详细视图,并为设计基于 IV-A 型的基因组编辑工具提供了结构基础。
取决于各种细胞因子的有效局部浓度,特异性和非特异性成分的活性各不相同。T细胞,NK细胞和巨噬细胞是组织和支持细胞介导的免疫力的细胞因子的主要来源。 细胞介导的和体液免疫,尽管它们具有独特的特征,但并非完全独立,实际上是协同作用的。 细胞,例如巨噬细胞,NK细胞,中性粒细胞和嗜酸性粒细胞,可以用作可以使用抗体作为受体来识别和靶向其执行的桥梁(图 10.1)。 趋化肽起源于响应抗原抗体复合物的补体的激活,也有助于组装细胞介导的反应所需的细胞类型。T细胞,NK细胞和巨噬细胞是组织和支持细胞介导的免疫力的细胞因子的主要来源。细胞介导的和体液免疫,尽管它们具有独特的特征,但并非完全独立,实际上是协同作用的。细胞,例如巨噬细胞,NK细胞,中性粒细胞和嗜酸性粒细胞,可以用作可以使用抗体作为受体来识别和靶向其执行的桥梁(图10.1)。趋化肽起源于响应抗原抗体复合物的补体的激活,也有助于组装细胞介导的反应所需的细胞类型。
许多蛋白质家族由多种高度同源蛋白组成,无论它们是由不同基因编码还是来自相同基因组位置的编码。某些同工型的优势与各种病理状况(例如癌症)有关。研究中蛋白质同工型的检测和相对定量通常是通过免疫印迹,免疫组织化学或免疫荧光来完成的,其中使用针对特定家族成员的同工型特异性表位的抗体。但是,同工型特异性抗体并非总是可用的,因此无法破译同工型特异性蛋白表达模式。在这里,我们描述了多功能11氨基酸标签的插入到感兴趣蛋白质的基因组位置中。此标签是开发的,由Promega(美国威斯康星州Fitchburg)发行。本协议描述了高度同源蛋白的精确蛋白质表达分析,通过hibit标签的表达,当缺失特定抗体时,可以实现蛋白质表达定量。可以通过传统方法(例如蛋白质印迹或免疫荧光)以及在荧光素酶二元报道器系统中分析蛋白质表达,从而可以使用板读取器进行可靠且快速的相对表达定量。
花蜜经常被微生物定植,其中细菌和酵母是最丰富的。这些微生物具有改变花蜜特征的能力,并对整个花朵访问的昆虫的社区产生影响。对昆虫食草动物的自然敌人进行的最新研究表明,微生物介导的花蜜特征的变化会影响寄生虫的觅食行为和生活历史特征。微生物挥发性有机化合物的产生会影响寄生虫对花蜜的吸引力,而糖和氨基酸组成的变化会影响其寿命。未来的研究应集中于理解花蜜微生物定植对寄生虫生殖的影响,并特别强调了在花蜜中已知的不同微生物分类群之间的相互作用。总的来说,这篇评论强调了考虑花蜜居住的微生物在塑造寄生虫之间相互作用及其粮食资源之间的相互作用中的作用的重要性。
•激活MAPK信号传导的替代机制(例如,获得的RAS突变,EGFR Ectodomain突变)与对针对EGFR类似Cetuximab和Panitimumab的靶向疗法的反应丧失有关。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。
a 澳大利亚墨尔本大学化学学院激子科学卓越研究中心,帕克维尔,VIC 3010,澳大利亚;b 比利时鲁汶大学化学系分子成像与光子学,Celestijnenlaan 200F,3001 Heverlee;c 北海道大学电子科学研究所 (Ries),日本北海道札幌市北区 N20W10,001-0020;d 马克斯普朗克聚合物研究所,美因茨,D-55128,德国 * 通讯地址:susana.rocha@kuleuven.be,james.hutchison@unimelb.edu.au 摘要:尽管取得了重大进展,但癌症仍然是全球主要的死亡原因。目前的治疗方法常常由于肿瘤切除不彻底和靶向性不强而失败,这激发了人们对替代疗法的兴趣。高温疗法利用高温杀死癌细胞或增强其对放射/化疗的敏感性,已成为一种有前途的替代疗法。最近的进展是利用纳米粒子 (NP) 作为热介质来选择性破坏癌细胞,从而最大限度地减少对健康组织的损害。这种方法称为 NP 高温疗法,分为两类:光热疗法 (PTT) 和磁热疗法 (MTT)。PTT 利用将光转化为热的 NP,而 MTT 利用由交变磁场 (AMF) 激活的磁性 NP,两者均可实现局部肿瘤损伤。这些方法具有精准靶向、微创和降低全身毒性等优势。然而,NP 高温疗法的疗效取决于许多因素,特别是 NP 特性、肿瘤微环境 (TME) 和 TME-NP 相互作用。优化这种治疗需要准确的热监测策略,例如纳米测温法和生物相关筛选模型,这些模型可以更好地模拟人体肿瘤的生理特征。本综述探讨了 NP 介导癌症热疗的最新进展,讨论了可用的纳米材料、其优缺点、表征方法和未来发展方向。我们特别关注临床前 NP 筛选技术,为其在临床试验过程中的功效和相关性提供最新视角。
摘要 四十年来,植物转化与再生技术不断发展。在水稻(Oryza sativa L.)中,农杆菌介导的转化方法利用成熟种子和未成熟胚在粳稻和一些籼稻品种中具有较高的转化效率。然而,这些方法在2010年以来华南地区开发的最新籼稻品种中转化效率较低。在本文中,我们通过基于CRISPR/Cas的基因组编辑和传统的过表达转化探索了优质高产籼稻品种南桂占(NGZ)的植物培养再生。我们以成熟种子和基因谷粒大小和数量1(GSN1)为例,比较了该品种与其他四个广泛使用的籼稻品种和一个粳稻品种的转化效率。我们观察到不同品种中过表达系的谷粒大小普遍较小,而基因编辑系的谷粒大小较大。 NGZ 表型使其成为研究基因功能的极佳模型。我们还研究了愈伤组织中单核苷酸多态性 (SNP) 的分布和再生相关基因的表达水平差异,可能揭示了 NGZ 在农杆菌介导转化中的优势来源。这些结果为 NGZ 在与谷物改良相关的基因编辑和过表达转化中的高级应用提供了启示,为“水稻育种 4.0 时代”做出了贡献。
Cas9 是一种 RNA 引导的核酸内切酶,通过相关引导 RNA (gRNA) 与其靶基因座之间的互补性将其引导至特定 DNA 序列 1,2 。Cas9 可以通过 gRNA 引导至几乎任何任意序列,只需要靠近靶标的短原型间隔区相邻基序 (PAM) 位点 3–5 。通过突变分析,已经生成了缺乏核酸内切酶活性但仍保留与 DNA 相互作用能力的 Cas9 变体 2,6,7 。这些核酸酶无效 (dCas9) 变体随后被用效应结构域(例如转录激活结构域 (AD))功能化,使 Cas9 能够用作转录水平细胞编程的工具 6,8–10 。在天然染色体环境下对特定靶标进行强有力的表达诱导编程的能力将为无数应用提供变革工具,包括开发治疗干预、基因筛选、激活内源性和合成基因回路、以及诱导细胞分化 11-13 。