DNA是一种用于在生物体中携带遗传信息的核酸。这是一个9双链分子,该分子是由两个可能的氮基碱(denine&10 g uanine)和嘧啶(C ytosine&t hymine)和两个化学上极末端形成的,即11 5'和3'。watson-crick互补(WCC)的关系,其特征在于12 a c = t,g c = c,反之亦然,用于结合DNA的碱基。在1994年,Adleman [2] 13讨论了使用DNA分子的汉密尔顿路径问题。通过在DNA分子中编码一个小图,在所有操作中使用标准方案(例如WCC关系)进行了15个问题,可以解决此(NP完整)14问题。由于大规模的并行性,16个DNA计算成为研究人员中有强大的工具,可以解决计算17个困难问题。此外,对合成的DNA和RNA 18分子进行了实验,以控制其组合约束,例如恒定的GC-含量 - 含量和19次锤距。在有限领域的20个线性代码已经探索了将近三十年,但是在Hammons 22等人的出色工作之后,这个21个研究领域经历了惊人的速度。[21]当他们在z 4上建立线性代码与其他非23个线性二进制代码之间的关系时。之后,许多作者考虑了具有环24结构的字母,并通过特定的灰色图在有限的字段上找到了许多良好的线性代码。在25个线性代码类别中,由于其26个理论丰富性和实际实现,循环代码是关键和研究最多的代码。Liu等。 锤子37Liu等。锤子37最近,许多作者[4,5,14,20] 27使用环上的环状代码构建了DNA代码。,例如,Yildiz和Siap [20]和28 Bayram等。 [4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。 在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。 [13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。 同时,Gursoy等人。 [10]使用偏斜的环状代码研究了可逆的DNA代码32。 Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively. 35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。,例如,Yildiz和Siap [20]和28 Bayram等。[4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。[13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。同时,Gursoy等人。[10]使用偏斜的环状代码研究了可逆的DNA代码32。Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively.35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。
遗传密码是分子生物学的基础,已经使科学家着迷了数十年。它是将DNA中核苷酸序列转化为形成蛋白质的氨基酸的通用语言。然而,尽管它在生物学中起着至关重要的作用,但遗传密码并不是静态的。它随着时间的流逝而发展,适应环境压力和生物学需求。推动遗传密码演变的关键因素之一是密码子保守变化的概念。这些变化,涉及密码子序列的修改而不改变所得蛋白质,突出了遗传密码的灵活性和适应性。本文解释了遗传密码通过密码子的保守变化,这种进化背后的机制以及对理解生命复杂性的影响而发展的。
-Al -Abdulkader,A.,Loughland,R。A.和(2019)。阿拉伯湾的生态系统和生物多样性,沙特阿拉伯水域:科学研究五十年。沙特阿美和国王法赫德大学石油和矿物质。ISBN:978-603-02-7862- 6。 -Gherardi,F。,Corti,C。和Gualtieri,M。(2010年)。 生物多样性保护与栖息地管理,第1卷。 II。 eolss出版物。 -Abuzinada,A。H.,Robinson,E.R。 nader,I。 A.和Al Wetaid,Y。I. (2005)。 生物多样性公约。 沙特阿拉伯王国的国家生物多样性保护战略。 沙特阿拉伯国家野生动植物保护与发展委员会。 https://www.cbd.int/doc/world/sa/sa-nbsap-01-en.pdfISBN:978-603-02-7862- 6。-Gherardi,F。,Corti,C。和Gualtieri,M。(2010年)。生物多样性保护与栖息地管理,第1卷。II。 eolss出版物。 -Abuzinada,A。H.,Robinson,E.R。 nader,I。 A.和Al Wetaid,Y。I. (2005)。 生物多样性公约。 沙特阿拉伯王国的国家生物多样性保护战略。 沙特阿拉伯国家野生动植物保护与发展委员会。 https://www.cbd.int/doc/world/sa/sa-nbsap-01-en.pdfII。eolss出版物。-Abuzinada,A。H.,Robinson,E.R。nader,I。A.和Al Wetaid,Y。I.(2005)。生物多样性公约。沙特阿拉伯王国的国家生物多样性保护战略。沙特阿拉伯国家野生动植物保护与发展委员会。https://www.cbd.int/doc/world/sa/sa-nbsap-01-en.pdf
纠错是构建量子计算机的关键步骤。量子系统会因退相干和噪声而产生误差。通过使用量子纠错,可以防止量子计算设备中的量子信息被破坏。人们为开发和研究量子纠错码做出了许多努力和改进。其中,拓扑码(如表面码 [1], [2])因其高阈值和局部性 [3] 而有望用于构建实用的量子计算机。色码 [4] 是另一种有前途的用于容错量子计算的拓扑量子纠错码。它们提供的阈值相对较好,略低于表面码 [5], [6], [7]。然而,与表面码不同,横向 Clifford 运算可以充当逻辑 Clifford 运算 [8]。量子擦除通道 [9], [10] 是简单的噪声模型,其中一些量子位被擦除,并且我们已知哪些量子位被擦除。当一个量子比特被擦除时,该量子比特被认为会受到随机选择的泡利误差的影响。了解哪些量子比特被擦除可能会使开发解码算法变得不那么复杂。最近,有人提出了在量子擦除信道上以线性时间对表面码进行最大似然 (ML) 解码 [11],它被用作表面码和色码的近线性时间解码算法的子程序 [6],通过将它们投影到表面码 [12]、[7] 上来纠正泡利误差和擦除。在本文中,我们证明了当一组被擦除的量子比特满足某个可修剪性条件时,在量子擦除信道上对色码进行线性时间 ML 解码是可能的,并提出了一种解码算法,我们称之为修剪解码。我们还提供了当不遵守可修剪性约束时如何使用修剪解码的方法。
NASA:进入外太空的旅程(6-11岁)半天,只有疯狂的科学和NASA联手为您带来了这一新的发现航行中的兴奋和奇观。当我们探索地球上的气氛时,请参阅工作中的推力和推进原理!在研究星星的生命周期时,请观看星星燃烧,并穿过银河系。探索我们太阳系最远的距离,并在这次“疯狂”行星之旅中创建月食。在了解太空现象时,探测流星的奥秘,并在卫星光线周围弹跳。这是一种真正来自这个世界的体验!
1。引言人工智能(AI)和机器学习(ML)的整合彻底改变了药物发现和开发领域,利用了计算机科学,数学和物理学的优势。缓慢的营养,巨大的成本和值得注意的失败率Mar传统的药物开发方法。小分子药物的平均开发时间表约为15年,成本超过20亿美元[1]。这些数字已经升级,到2023年开发的新药达到61.6亿美元[2-4]。广泛的反复试验和错误有助于长时间的时间表和高局部负担。AI和ML技术可以显着增强药物发现过程。通过促进虚拟筛查,药物设计和药物靶向相互作用建模,AI可以快速准确地预测生物学能力[5]。ML算法可以分析复杂的生物学数据,包括基因组和蛋白质组学信息,以识别新型的药物靶标和生物标志物[6,7]。这种数据驱动的方法加速了发现过程,改善了治疗的精度和个性化。尽管有这些优势,但AI/ML在药物开发中的应用仍面临与数据质量,算法偏见和模型可解释性有关的挑战[8,9]。ad-
摘要。使用近邻搜索技术进行筛选是基于格的密码分析中一种众所周知的方法,在经典 [BDGL16] 和量子 [BCSS23] 设置中,它都能为最短向量问题提供当前最佳的运行时间。最近,筛选也已成为基于代码的密码分析中的重要工具。具体来说,使用筛选子程序,[GJN23、DEEK24] 提出了信息集解码 (ISD) 框架的变体,该框架通常用于攻击解码问题的密码相关实例。由此产生的基于筛选的 ISD 框架产生的复杂度接近于解码问题中性能最佳的经典算法,例如 [BJMM12、BM18]。因此,很自然地会问量子版本的表现如何。在这项工作中,我们通过设计上述筛选子程序的量子变体引入了第一个用于代码筛选的量子算法。具体来说,使用量子行走技术,我们提供了比 [DEEK24] 中最著名的经典算法和使用 Grover 算法的变体更快的速度。我们的量子行走算法通过添加一层局部敏感过滤来利用底层搜索问题的结构,这一灵感来自 [CL21] 中用于格子筛选的量子行走算法。我们用数值结果补充了对量子算法的渐近分析,并观察到我们对代码筛选的量子加速与在格子筛选中观察到的类似。此外,我们表明,基于筛选的 ISD 框架的自然量子类似物并没有比第一个提出的量子 ISD 算法 [Ber10] 提供任何加速。我们的分析强调,应该对该框架进行调整,以超越最先进的量子 ISD 算法 [KT17,Kir18]。
81513感染性疾病,细菌性阴道病,RNA标记的定量实时扩增对肥大的阴道,阴道gardnerella and gardnerella and ractobacillus物种,使用阴道流体标本,算法,算法是使用算法的,用于使用量子或阴性阴道的阳性或阴性阴道的阳性或负面的阴道症状,并实例性地实例性地实例性地实例性地实例化, DNA阴道,阴道上的DNA标志物,1型巨大阴道,细菌性阴道病相关细菌-2(BVAB-2)和乳酸菌种类(L. crispatus和L. jensenii)(L. crispatus and L. jensenii),用于使用阴道的较高的阴道,较高的阳性,质量为Ataginimenty,质量为Ataginimenty,质量较高的阳性,报道说,阴道和/或念珠菌物种(C. blopicalis,C。tropicalis,C。parapasilosis,C。dubliniensis),Candidaglabrata,Candida krusei。