基因组编辑 CRISPR/Cas9 技术已导致人工转录抑制因子(也称为 CRISPR 干扰 (CRISPRi))的开发。由 crRNA 引导的失活 Cas9 (dCas9) 蛋白可以特异性地结合靶 DNA 序列,包括启动子和操纵子,而不会切割 DNA。原型间隔区相邻基序 (PAM) 序列依赖性在靶向特异性 CRISPRi 的设计中可能是不利的,因为 PAM 序列对于 CRISPR/Cas9 系统的 DNA 切割至关重要。我们在 L-阿拉伯糖诱导的 P BAD 启动子的控制下,在大肠杆菌中构建了一个染色体整合的 dCas9 系统 (1 araBAD : dcas9)。将携带各种 crRNA 的质粒转化到表达 dCas9 的大肠杆菌中,这些 crRNA 具有针对 gal 启动子(-10 区域)和 gal 操纵子中的 galETK 结构基因的靶序列。在有或没有无偿 L-阿拉伯糖的情况下监测细胞生长和/或半乳糖代谢率。靶向转录延长会部分减缓 D-半乳糖消耗和细胞生长,但靶向转录起始会完全抑制 D-半乳糖消耗和细胞生长。此外,RT-qPCR 分析表明,具有几种修饰 PAM 序列的 CRISPRi 可以抑制靶 DNA 的转录。这些结果表明,可以通过使用 CRISPRi 靶向结构基因或调控区域来控制细胞代谢率和细胞生长;此外,松散的 PAM 序列依赖性可以扩展 CRISPRi 的 DNA 靶标。
摘要。在正常碳酸血症和中度及重度低碳酸血症期间测量脑血流量 (CBF) 和脑氧代谢率 (CMR0 2)。18 只 1 至 7 天大的新生杂种狗接受泮库溴铵治疗,并用 70% NzO 和 30% O 2 进行通气。调节呼吸器以使 PaC0 2 达到 15 托,随后通过调节吸入的 CO 2 浓度将 PaC0 2 调整至 25 和 40 托。PaC0 2 水平的顺序是随机的。用微球技术测量 CBF,CMR0 2 计算为动脉矢状窦 O 2 含量差乘以半球血流量。所有测量均在每个 PaC0 2 下 30 分钟后进行。• PaC0 2 为 25 托时总 CBF 降低(p < 0.001),与 25 托 CO 2 相比,PaC0 2 进一步降低至 15 托导致总 CBF 显著降低 (p < 0.01)。PaC0 2 为 25 托时所有区域脑血流量均降低(p < 0.001),PaC0 2 为 15 托时大多数区域 CBF 的流量进一步显著降低。在 PaCO z 为 40 托时,CMR0 2 为 1.28 ± 0.47 ml/ 100 g/min,在 PaCO 2 值为 25 和 15 托时,分别降至 1.09 ± 0.34 (p < 0.05) 和 1.04 ± 0.28 (p < 0.025) ml/l00 g/min。在 PaCO 2 为 40 托时,心输出量计算为 169 ± 71 ml/kg/min,在 PaCO 2 值为 25 和 15 托时,分别降至 135 ± 27 (p < 0.025) 和 127 ± 36 (p < 0.005) ml/kg/min。对于 PaCO z 在 10 至 50 托之间的值,PaCO 2 与 CBF 之间的关系的回归分析是非线性的(In CBF = a + b·PaCO 2 )。区域 CBF 的一系列回归曲线显示 R 值在 0.69 和 0.81 之间(p < 0.001)。结论是,当 PaCO 2 值为 25 和 15 托时,低碳酸血症会导致总脑血流量和区域脑血流量显著减少。与正常碳酸血症相比,当 PaCO 2 值为 25 和 15 托时,CMR0 2 和心输出量也显著减少。在 10 至 50 托之间,区域 CBF 与 PaCO 2 之间存在非线性关系。(Pediatr Res 20:1102-1106,1986)
对食欲控制的任何解释都应包含对物理过程的描述,这些过程可能有助于与抑制饮食的人一起进食。然而,直到15年前,一系列独立研究计划投入了身体成分和食欲的生理作用,这项事业被大大忽略了。这些结果表明,无脂肪的质量(FFM)而不是脂肪质量与客观测量的饮食大小和能量摄入(EI)呈正相关。这些发现伴随着证明,静息代谢率(RMR)也与EI呈正相关,而FFM的影响很大程度上由RMR介导。这些发现将驱动器的作用重新引入了食欲控制模型,并指示如何将其与抑制过程集成在一起。EI的决定因素适合进化的观点,在该观点中,高代谢率器官和骨骼组织的能量需求构成了滋补饮食驱动的状态。这种方法应导致食欲的综合模型的发展,这些模型包括人体成分(FFM)和能量消耗(RMR),作为食欲的滋补生物学信号,沿侧面的其他传统滋补(源自源自)和情节信号(胃肠道衍生)。本文是讨论问题的一部分,“肥胖的原因:理论,猜想和证据(第一部分)”。
摘要:在某些情况下,胶质母细胞瘤在常规 MRI 上可能与脑转移瘤相似,但两者的治疗方法却有很大不同。这项前瞻性可行性研究旨在通过首次将定量磁化率映射和定量血氧水平依赖性 (QSM + qBOLD) 模型应用于这些实体来区分它们。我们前瞻性地纳入了 15 名未经治疗的胶质母细胞瘤患者(n = 7,中位年龄:68 岁,范围:54-84 岁)或脑转移瘤患者(n = 8,中位年龄 66 岁,范围:50-78 岁),这些患者在术前接受了包括多梯度回波和动脉自旋标记序列在内的 MRI 检查。使用人工神经网络计算了增强肿瘤 (CET) 和肿瘤周围非增强 T2 高信号区域 (NET2) 中的氧提取分数 (OEF)、脑血流量 (CBF) 和脑氧代谢率 (CMRO 2)。我们证明,胶质母细胞瘤的 CET 中的 OEF 明显低于 (p = 0.03) 转移瘤,仅对于转移瘤患者,CET 中的所有特征都明显高于 (p = 0.01) NET2,转移瘤患者的 CBF (p = 0.04) 和 CMRO 2 (p = 0.01) 的 CET/NET2 比率明显高于胶质母细胞瘤患者。支持向量机分类器的判别能力在两种特征组合下最高,受试者工作特征曲线下面积为 0.94,诊断准确率为 93%。QSM + qBOLD 可以对胶质母细胞瘤和脑转移瘤进行稳健区分,同时深入了解肿瘤氧合情况。
风险分层通常被记录为高风险,中间风险或低风险,用于确定因梗塞或重新施加死亡风险的受益人,以提供康复过程的指南。风险分层包括在程序启动后三周内进行的跑步机心电图(ECG)应力测试期间的运动局限性。测量风险分层是通过在合格的正式跑步机运动测试或患者参与之前进行的循环测试测试中实现的代谢当量(MetS)来确定的。MET或工作代谢率/静息代谢率是体育活动期间氧气消耗率的倍数。一个MET代表静止成年成年人的氧气消耗率的近似速率,每公斤体重每分钟消耗的氧气消耗3.5 mL。对于8-18岁的受益人患有先天性心脏缺陷,风险分层可能包括基线氧饱和度,抑制生理学状态,缺陷的特定性质以及相关心律不齐的病史。可以通过在8岁及以上的受益人中应用METS来确定风险分层的测量,这些受益人接受了跑步机或周期测试计测试,或者还包括受益人的心脏病专家的陈述,这些陈述考虑了当前的血液动力学状态,缺陷的特定性质以及对运动的预期响应。
对于大脑的解剖学和功能生长,所有NU都至关重要的是,有助于能量,碳水化合物,蛋白质和脂肪代谢的尤其重要[67]。 构成人体主要能源的三种大量营养素是碳水化合物,蛋白质和脂肪[117]。 碘,COP PER,锌和胆碱,维生素A和长链Polyunsatu等级的脂肪酸(LC-PUFAS)是对脑结构产生重大影响的其他营养素。 通过其对神经递质浓度,受体和再摄取系统的影响,营养素也会影响大脑的功能。 特别影响神经递质的营养因子包括蛋白质,铁,锌,铜和胆碱。 通过其对代谢率的影响,营养素还会影响神经元的电生理潜力。 神经元电势产生是一种高能活性,取决于线粒体产生足够的ATP的功能。 因此,发育中的大脑对的营养有很高的要求尤其重要[67]。构成人体主要能源的三种大量营养素是碳水化合物,蛋白质和脂肪[117]。碘,COP PER,锌和胆碱,维生素A和长链Polyunsatu等级的脂肪酸(LC-PUFAS)是对脑结构产生重大影响的其他营养素。通过其对神经递质浓度,受体和再摄取系统的影响,营养素也会影响大脑的功能。特别影响神经递质的营养因子包括蛋白质,铁,锌,铜和胆碱。通过其对代谢率的影响,营养素还会影响神经元的电生理潜力。神经元电势产生是一种高能活性,取决于线粒体产生足够的ATP的功能。因此,发育中的大脑对
图 1 循环的进化模型:早期脊椎动物、鱼类、两栖动物和哺乳动物的循环系统。文昌鱼是一种原始脊椎动物,没有心脏作为中央循环器官,也没有鳃,氧气通过皮肤吸收。血液在没有内皮衬里的血管内自主流动。鱼类有单环、以静脉为主的循环,心脏有两个腔,一个心房和一个心室,与鳃和体循环串联。从水中到陆地的过渡要求新器官——肺的发育,以及心脏变态为由两个心房和一个心室组成的三腔器官。在两栖动物中,来自肺的动脉血和来自身体的静脉血在心室内混合,这为并行的低压肺循环和体循环提供服务。温血哺乳动物的循环系统进一步发育,代谢率更高,对氧气的需求也更大。这是通过完全分离肺循环和体循环实现的。除了现有的为肺循环服务的心室外,还发展出一个新的腔体,即左心室,为高压动脉循环服务。这两个循环是串联的。鸟类的心肺系统体现了独特的代谢适应能力,可适应较低气压和温度以及相对缺氧的极端条件(Scott,2011)。生理性高热和高血压所反映的高代谢率使鸟类也能克服重力,成为空气生物。(改编自 Furst(2020a),经 Springer-Nature 许可使用。)
断言 (A) 是正确的。发烧,也称为发热,是指身体的核心温度超过正常范围。发烧的人可能会感到温暖、寒冷或发抖,因为设定点的上升会触发产热效应,例如肌肉收缩会增加代谢率,减少皮肤散热,从而使人感到寒冷和发抖。当恢复正常的稳态设定点时,产热过程的结束会使人感到非常温暖,而出汗有助于将身体冷却到新的较低温度。