摘要:基因组步行经常被应用于分子生物学和相关领域。在此提出了一种简单但可靠的基因组步行技术,称为半位点特异性引物PCR(3SP-PCR)。3SP-PCR的键是在次级PCR中使用半位点特异性引物,该引物部分重叠了其相应的主要位点特异性引物。3sp-PCR组包括两轮嵌套的放大反应。在每一轮反应中,任何底漆仅在单个放松静态周期中仅在DNA模板中部分退火,从而形成一组单链DNA。靶标单链DNA可以转换为由位点特异性引物指向的双链分子,因此可以通过随后的高差异周期进行指数分化。由于缺乏与任何底漆的完美结合位点,因此无法将非目标转换为双链,因此无法扩增。我们通过使用它来探测水稻湿霉素基因的未知DNA区和左旋乳杆菌CD0817谷氨酸脱羧酶基因的未知DNA区域。
摘要:在候选神经退行性/神经精神上的风险预测生物标志物中,血小板计数,平均血小板体积和血小板分布宽度与重大抑郁症(MDD),阿尔茨海默氏病(AD)和帕金森氏病(PD)和基因学研究的风险有关。我们使用上述所有特征的全基因组关联研究(GWASS)的公开摘要统计数据来利用这些统治进行多特征关联分析。进行了基于基因的富集测试,以及对显着富集基因的网络分析。我们分析了分析的GWASS中共有的4,540,326个单核苷酸多态性,观察到149个全基因组的多特征LD独立关联(P <5×10-8)的AD,PD的PD和139的MDD。在其中,AD检测到27个新型关联,PD检测到34个,MDD检测到40个。在±10 kb以内的带注释变体的18,781个基因中,有62个基因富含与AD的关联,70与PD和125个与MDD的关联(P <2.7×10-6)。,七个基因是AD(EPPK1,TTLL1,PACSIN2,TPM4,PIF1,PIF1,ZNF689,AZGP1P1)的新敏感性基因座,PD(SLC26A1,EFNA3)和两个用于MDD(HSPH1,TRMTMT6611A)。所得网络显示出显着的相互作用过量(富集p = 1.0×10-16)。被鉴定出的新基因参与了细胞骨架结构的组织(EPPK1,TTLL1,PACSIN2,TPM4),端粒缩短(PIF1),调节细胞老化,“ ZNF689,ZNF689,AZGP1P1)和NEUREDISTION INSINGE INSTIST INSTIST INSIGTION(eFREDINES INSTIDER INSIGTION(EFRESITION)(EFRESITCTIONT(EFRESITION)(EFLENNA3),EFLENNA3),EFRESIGHT(EFRESIGHT),EFRESIGHT(EFLENA3),,eflyna3)疾病和血小板参数。
在35,559名冰岛人的较大蛋白质组学研究中,Ferkingstad等。测试了与373种疾病和其他性状关联的血浆蛋白水平,并确定了257,490个关联。3整合了PQTL和遗传关联,研究人员发现,GWAS目录中45,334个铅关联中有12%与高链接不平衡的变体与PQTL的变体。他们还鉴定了938个基因,这些基因编码了潜在的药物靶标的变体,这些变异会影响可能的生物标志物水平。“结合蛋白质组学,基因组学和转录组学,我们提供了一种宝贵的资源,可用于改善对疾病发病机理的理解,并协助药物发现和发育,”他们总结道。
摘要 凝缩蛋白是通过线性易位压缩 DNA 的分子马达。在秀丽隐杆线虫中,X 染色体含有一种参与剂量补偿 (DC) 的专门凝缩蛋白。凝缩蛋白 DC 被招募到 X 染色体 (rex) 上的少数招募元素并从中扩散,并且是拓扑关联域 (TAD) 形成所必需的。我们利用基本上没有凝缩蛋白 DC 和 TAD 的常染色体来解决 rex 位点和凝缩蛋白 DC 如何引起 TAD 的形成。当常染色体和 X 染色体物理融合时,尽管凝缩蛋白 DC 扩散到常染色体中,但不会产生 TAD。在 X 染色体上插入强 rex 都会导致 TAD 边界形成,无论序列方向如何。当相同的 rex 插入到常染色体上时,尽管有凝缩蛋白 DC 募集,但没有扩散或 TAD 特征。另一方面,当由六个 rex 位点或三个单独的 rex 位点组成的“超级 rex”插入到常染色体上时,凝缩蛋白 DC 的募集和扩散导致 TAD 的形成。因此,募集到 rex 位点并从 rex 位点扩散是重现 X 染色体上观察到的环锚定 TAD 的必要和充分条件。总之,我们的数据表明一个模型,其中 rex 位点既是凝缩蛋白 DC 的加载位点,也是双向屏障,凝缩蛋白 DC 是一种具有可移动非活性锚的单侧环挤出器。
1 卡坦扎罗“大希腊”大学健康科学系,S 校区。 Venuta”,Viale Europa,88100 Catanzaro,意大利 2 Net4Science 学术衍生公司,卡坦扎罗“大希腊”大学,校区“S. Venuta”,Viale Europa,88100 Catanzaro,意大利 3 卡坦扎罗“大希腊”大学实验和临床医学系,S 校区。 Venuta”,Viale Europa,88100 Catanzaro,意大利 4 卡利亚里大学生命与环境科学系,Cittadella Universitaria di Monserrato,09124 卡利亚里,意大利 5 罗马 Tor Vergata 大学实验医学系,Via Montpellier,1,00133 罗马,意大利 6 计算应用研究所“Mauro Picone”-CNR,00185 罗马,意大利 * 通讯地址:artese@unicz.it;电话:+39-0961-3694297
化学交联能够快速识别 RNA-蛋白质和 RNA-核酸分子间和分子内相互作用。然而,目前尚无方法能够位点特异性和共价交联 RNA 内两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够位点特异性和酶促交联(夹紧)RNA 内两个选定的鸟嘌呤残基。分子内夹紧会破坏正常的 RNA 功能,而随后对交联剂进行光裂解会恢复活性。我们使用 RNA-CLAMP 通过光裂解交联剂夹紧 CRISPR-Cas9 基因编辑系统的单向导 RNA (sgRNA) 内的两个茎环,完全抑制编辑。可见光照射会裂解交联剂并以高时空分辨率恢复基因编辑。设计两种对不同波长的光有响应的光裂解接头,可以在哺乳动物细胞中实现基因编辑的多路复用光激活。这种光激活的 CRISPR-Cas9 基因编辑平台受益于无法检测的背景活动,提供激活波长的选择,并具有多路复用功能。
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。
作用于 RNA 的腺苷脱氨酶 (ADAR) 可以重新用于实现位点特异性的 A-to-I RNA 编辑,方法是通过 ADAR 招募向导 RNA (adRNA) 将它们招募到感兴趣的靶标上。在本章中,我们详细介绍了通过两种正交策略实现此目的的实验方法:一是通过招募内源性 ADAR(即已经在细胞中天然表达的 ADAR);二是通过招募外源性 ADAR(即将 ADAR 递送到细胞中)。对于前者,我们描述了使用环状 adRNA 将内源性 ADAR 招募到所需的 mRNA 靶标上。这可在体外和体内实现稳健、持久且高度转录特异性的编辑。对于后者,我们描述了使用 split-ADAR2 系统,该系统允许过度表达 ADAR2 变体,可用于以高特异性编辑腺苷,包括难以编辑非优选基序中的腺苷,例如 5′ 鸟苷两侧的腺苷。我们预计所述方法应促进研究和生物技术环境中的 RNA 编辑应用。
摘要:石墨烯具有原子层厚度的二维共轭结构、大的比表面积等优异性能,被广泛研究作为理想的气体传感平台。本文报道,通过位点选择性离子束诱导氟化引入共价CF键,由于氟化石墨烯表面对气体的吸附增强,石墨烯对氨气的传感响应可以大大提高。对氨气的响应提高了8倍,检测限接近65 ppb。利用Langmuir等温模型分析了氨气和氟化石墨烯之间的吸收动力学,结果表明,灵敏度的提高主要归因于氟化石墨烯对氨气分子的强结合能,这与之前的理论预测一致。
CRISPR/Cas9 基因编辑可以精确地灭活基因。该过程涉及 DNA 双链断裂 (DSB),这可能导致细胞适应性丧失。我们假设 DSB 毒性可能因目标基因座中的染色质环境而异。在这里,通过分析同源细胞系对 CRISPR 实验以及来自约 900 个细胞系的先前筛选数据,我们发现 TP53 相关的断裂毒性在含有活性染色质的基因组区域(例如基因调控元件或转录延长组蛋白标记)中更高。DSB 修复途径选择和 DNA 序列环境也与毒性有关。我们还表明,由于 sgRNA 靶向位点的差异毒性引入了噪声,在 TP53 野生型细胞中,基因筛选检测条件必需性的能力降低。了解 Cas9 切割毒性的决定因素将有助于改进 CRISPR 试剂的设计,以避免偶然选择 TP53 缺陷和/或 DNA 修复缺陷的细胞。