摘要 无尾飞机固有偏航控制功率有限和方向稳定性差的缺点。为了在低成本和低风险的无尾配置早期设计过程中解决这些问题,本文提出了一种创新的实验方法,将动态缩放模型安装在风洞中的三自由度装置上,以验证控制律并定量评估飞行品质。推导了无尾演示器在装置上的运动方程,然后对装置约束模型和自由飞行模型的横向飞行动力学进行了比较。根据缩放修正的飞行品质标准,完成了偏航和滚转运动控制增强系统的构建。通过在不同空速和攻角下的稳定飞行员在环飞行证明了所设计的控制律的有效性。通过应用多步机动进行低阶等效系统辨识来评估所实现的闭环飞行品质。尽管在开环情况下偏航会表现出严重的不稳定性,但在低攻角下,荷兰滚模式的闭环飞行品质可以提高到 1 级。
摘要 无尾飞机固有的偏航控制功率有限和方向稳定性差的缺点。为了在低成本和低风险的无尾配置早期设计过程中解决这些问题,本文提出了一种创新的实验方法来验证控制律并定量评估飞行品质,该方法使用安装在风洞中三自由度试验台上的动态缩放模型。推导了试验台上无尾演示器的运动方程,然后对试验台约束模型和自由飞行模型之间的横向飞行动力学进行了比较。根据缩放修正的飞行品质标准,完成了偏航和滚转运动控制增强系统的构建。通过在不同空速和攻角下的稳定飞行员在环飞行证明了所设计的控制律的有效性。通过应用多步机动进行低阶等效系统辨识来评估所实现的闭环飞行品质。尽管在开环情况下偏航会表现出严重的不稳定性,但荷兰滚模式的闭环飞行品质在低攻角下可以提高到 1 级。
智能手机万向节的开发,通过使用微控制器和 MPU 6050 传感器,使其变得简单且更省钱。最近,摄像和图像处理的发展与智能手机技术的快速发展密不可分。最受欢迎的功能之一是相机。手部运动和冲击会导致最大效果减少。为了提高相机拍摄和视频的质量,必须有一个稳定器来稳定相机位置。因此,预计本文的结果能够为廉价的智能手机万向节做出贡献。万向节的设计和实现使用丙烯酸作为材料,厚度为 5 毫米。该 MPU 6050 传感器经过优化,可检测 X、Y 和 Z 轴的摆动或滚动、俯仰和偏航。陀螺仪和加速度计为微控制器提供输入,微控制器将处理 3 个伺服电机的输出,这些伺服电机的作用是将相机的位置保持在指定的设定点。结果表明,MPU 6050 传感器可以响应 1.34° 的滚动、0.25° 的俯仰和 0.78° 的偏航角度读数误差。伺服电机最大运动误差为 1.5°。因此,可以得出结论,万向架可以以更低的成本和更低的误差实现最佳工作。预计下一步研究将增加其他合适且精确的控制,即 PID 或模糊。
本文介绍了四轴飞行器原型的发展,包括四自由度 (4DOF),也有可能在龙卷风中旋转(偏航、俯仰和滚转)或长时间旋转 z(高度)。目标是使用商业四轴飞行器(传感器和参与者)的主要量化组件,并使用 PID、LQR 和滑模技术来控制高度和高度的应用。系统模型部分,大多数是特定的信息、使用的组件和最终的控制者、模拟和应用程序。
JAR 22.321 概述 JAR 22.331 对称飞行条件 JAR 22.333 飞行包线 JAR 22.335 设计空速 JAR 22.337 极限机动载荷系数 JAR 22.341 阵风载荷系数 JAR 22.345 减速板和襟翼展开时的载荷 JAR 22.347 非对称飞行条件 JAR 22.349 滚动条件 JAR 22.351 偏航条件 JAR 22.361 发动机扭矩 JAR 22.363 发动机支架侧向载荷 JAR 22.371 陀螺仪载荷 JAR 22.375 翼梢小翼
摘要:智能化是未来汽车行业的发展趋势。智能设备要求车辆的动态控制可以根据决策计划的轨迹输出来完成轨迹跟踪,并确保车辆的驾驶安全性和稳定性。但是,紧急情况引起的轨迹限制规划和严格的道路条件将增加轨迹跟踪和无人车辆稳定控制的困难。鉴于上述问题,本文研究了分布式驱动器无人车辆的轨迹跟踪和稳定性控制。本文应用了分层控制框架。首先,在上部控制器中,提出了算法后的自适应预测时间线性二次调节器(APT LQR)路径,以考虑轮胎的动态稳定性性能,以获取所需的前轮驱动角度。DDAUV的横向稳定性是基于相位平面确定的,在改进的滑动模式控制(SMC)中,滑动表面进行进一步调节,以获得所需的额外偏航矩,以协调路径后跟随和横向稳定性。然后,在下部控制器中,考虑到四个轮胎的滑动和工作负载,建立了全面的成本功能,以合理地分配四个轮毂电动机(IWM)的驾驶扭矩,以生成所需的额外偏航矩。最后,建议的控制算法通过硬件(HIL)实验平台验证。结果显示了以下路径,并且在不同的驾驶条件下可以有效地协调横向稳定性。
ACU-200 利用多种无线连接功能,包括:Cat 4 LTE 蜂窝、3G GSM 蜂窝、2G 蜂窝和 433 MHz。这些系统可以直接从 ARINC 429 数据总线接收数据,并使用以太网与航空电子或机外系统进行双向通信。ACU 的机载 IMU 和 GPS 还可以生成有关飞机运动的信息,包括姿态(滚转、俯仰、偏航)、旋转速率、加速度、航向、速度和位置(纬度、经度、高度),从而简化了传统飞机上的一些数据采集挑战。
ACU-200 利用多种无线连接功能,包括:Cat 4 LTE 蜂窝、3G GSM 蜂窝、2G 蜂窝和 433 MHz。这些系统可以直接从 ARINC 429 数据总线接收数据,并使用以太网与航空电子或机外系统进行双向通信。ACU 的机载 IMU 和 GPS 还可以生成有关飞机运动的信息,包括姿态(滚转、俯仰、偏航)、旋转速率、加速度、航向、速度和位置(纬度、经度、高度),从而简化了传统飞机上的一些数据采集挑战。
和/或对一架直升机 (AgustaWestland AW139) 和以下固定翼飞机的 Primus EPIC AFCS 进行共模分析 (CMA): - Embraer ERJ170/175/190/195, - Dornier Do728(已停产), - Gulfstream G500、G550, - Dassault Falcon F900EX EASy、F2000 EASy、F7X, - Raytheon Hawker 4000 Horizon, - Cessna Citation Sovereign。AFCS 高度集成,通常提供以下功能:自动驾驶仪、飞行指引仪、偏航阻尼器、失速警告和失速保护、自动油门、俯仰自动配平和马赫配平。