摘要 背景与目的:最后一年的学生是一个由于学术生活、责任以及学术界的要求(例如完成论文、实地考察和其他学术负担)而感到压力的群体。此外,当前的疫情可能会导致与沟通和日常生活变化有关的压力。压力会增加肾上腺素、儿茶酚胺、胰高血糖素、糖皮质激素、β-内啡肽和生长激素的释放,从而导致皮质醇过量产生,从而升高血糖水平。本研究旨在确定医学实验室技术本科生的压力水平与血糖水平之间的关系。 方法:本研究方法采用横断面方法,符合纳入标准的样本为 35 个。使用的压力测量工具是抑郁焦虑压力量表 (DASS) 问卷。使用葡萄糖氧化酶过氧化物酶氨基安替比林法检查血糖。本研究中使用的分析是使用卡方检验的相关性检验结果:学生的压力水平显示正常压力高达 11%,轻度压力为 26%,中度压力为 46%,重度压力高达 17%。压力水平和血糖水平之间的双变量分析结果为 p=0.012 (p<0.05)。结论:Jenderal Achmad Yani 大学 Cimahi 的 D4 医学实验室技术专业最后一年学生的压力水平和血糖水平之间存在显著关系。本研究的结果成为糖尿病前期筛查数据之一。学生的压力管理需求可以成为避免糖尿病风险的因素之一。关键词:血糖水平;压力;学生。
摘要:用于成像神经递质、神经调节剂和神经肽的新工具的出现改变了我们对神经化学在大脑发育和认知中的作用的理解,但对这一新维度的神经生物学信息的分析仍然具有挑战性。在这里,我们使用近红外儿茶酚胺纳米传感器 (nIRCat) 对纹状体脑组织切片中的多巴胺调节进行成像,并实施机器学习以确定多巴胺调节的哪些特征是刺激强度变化和不同神经解剖区域所独有的。我们训练了一个支持向量机和一个随机森林分类器来判断记录是从背外侧纹状体 (DLS) 还是背内侧纹状体 (DMS) 进行的,并发现机器学习能够准确区分 DLS 中发生的多巴胺释放和 DMS 中发生的多巴胺释放,而这是典型统计分析无法实现的。此外,我们的分析表明,多巴胺调节信号(包括独特的多巴胺释放位点的数量和每次刺激事件释放的多巴胺峰值)最能预测神经解剖学。这是因为综合神经调节剂的量是用于监测动物研究中神经调节的常规指标。最后,我们的研究发现,机器学习对不同刺激强度或神经解剖区域的区分仅在成年动物中才有可能,这表明在动物发育过程中多巴胺调节动力学具有高度的可变性。我们的研究强调,机器学习可以成为一种广泛使用的工具,用于区分神经解剖区域或神经典型状态和疾病状态,具有传统统计分析无法检测到的特征。关键词:多巴胺、机器学习、纳米传感器、纹状体■简介
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
使用非侵入性刺激 (NIBS) 技术治疗脑部疾病的想法可以追溯到几个世纪前,如今已成为现代神经病学和精神病学的主要治疗前景之一(Peruzzotti-Jametti 等人,2013 年;Rossini 等人,2015 年;Cambiaghi 和 Sconocchia,2018 年)。非侵入性刺激技术包括多种选择,包括经颅磁刺激 (TMS)、不同的经颅电刺激 (tES) 方法、迷走神经刺激 (VNS) 和聚焦超声刺激 (FUS)。这套技术已广泛用于研究中枢神经系统生理学和特定脑结构的功能作用,以及多种脑部疾病的现代治疗方法。本研究主题汇集了五份手稿,重点介绍了这一异质研究领域内的许多不同方面,从在生理条件下使用 NIBS 技术,如人类大脑增强或调节小鼠的神经可塑性和行为,到治疗神经病理学疾病,如阿尔茨海默病或轻度至中度创伤性脑损伤后的持续性创伤后症状。基于植入设备的迷走神经刺激 (iVNS) 于 1997 年首次获得 FDA 批准用于治疗癫痫,后来用于治疗抑郁症,但它存在一些安全问题,这为经皮迷走神经刺激 (tVNS) 的发展铺平了道路,经皮迷走神经刺激可通过耳朵 (耳廓) 或颈部 (颈部) 的位置应用 ( Butt 等人,2020 年)。Vargas-Caballero 等人在他们的小型评论中。讨论了 tVNS 成为治疗阿尔茨海默病 (AD) 早期认知症状的可靠疗法的理由。在不同的可能作用机制中,作者将注意力集中在激活蓝斑 (LC) 上,这会导致海马和新皮质释放儿茶酚胺,随后增强突触可塑性并减少炎症信号。事实上,介导注意力、记忆力和
gryllus bimaculatus是一种生物学领域的新兴模型生物,例如行为,神经病学,生理学和遗传学。最近,反向遗传学的应用为理解具有特定生理反应的基因调查网络的功能基因组学和操纵基因调节网络提供了机会。bimaculatus。在g中使用CRISPR/ CAS9系统。bimaculatus,我们提出了与昆虫黑色素和儿茶酚胺生物合成途径有关的酪氨酸羟化酶(Th)和黄色Y的有效敲低。作为一种酶,将酪氨酸转化为3,4-二羟基苯基甲基甲基甲烷,限制了途径中的第一步反应。黄色蛋白质(Dopachrome Convertion酶,DCE)也参与黑色素生物合成途径。色素沉着中黑色素生物发生的调节系统和分子机制及其在G中的物理功能。bimaculatus尚未因缺乏体内模型而被很好地定义。在F 0个个体和可遗传的F 1后代都检测到核苷酸的缺失和核苷酸核苷酸的插入。我们确认通过定量的实时PCR分析在突变体中下调了Th和Yel-Y-Y。与对照组相比,Th和黄色基因的突变导致色素沉着缺陷。大多数F 0若虫具有第一个幼体的基因突变,而唯一的成年人在机翼和腿部有很明显的缺陷。但是,我们无法获得第一个龄的所有F 2死亡的TH突变体的任何纯合子。bimaculatus。因此,基因对于G的生长和发展非常重要。当将黄色基因拆除时,g时为71.43%。bimaculatus是浅棕色,腹部有轻微的镶嵌物。黄色基因可以通过杂交实验稳定地遗传,没有明显的表型,除了较轻的表皮颜色。目前的功能研究表明,Th和黄色在色素沉着中的基本作用,TH具有多巴胺合成在G中胚胎发育中的深远而广泛的作用。bimaculatus。
• First degree relatives are defined as a blood relative with whom the individual shares approximately 50% of his/her genes, including parents, full-siblings, and children on both maternal and paternal sides • Second degree relatives are defined as a blood relative with whom an individual shares approximately 25% of his/her genes, including grandparents, grandchildren, uncles, aunts, nieces, nephews, and half-siblings • Third degree relatives被定义为血亲戚,一个人与该亲戚共享其基因的约12.5%,包括第一家伙,曾祖父母或曾孙基因测试,应由基因检测和/或心脏离子离子通道病的专家进行。确定长QT综合征(LQT)的预测试概率未标准化。LQT的患者的一个例子是Schwartz评分为2或3的患者。暗示布鲁加达综合征(BRS)的体征和症状包括具有特征性心电图模式,记录在45岁以下的家庭成员中的心室心律失常(SCD),在家庭成员中的特征性心电图模式,在家庭成员中,可诱导的心血网心血网上的电力性心脏病学研究,或对电力性研究。预计具有可疑QT综合征(SQT)的索引患者将缩短(低于平均值较低的标准偏差[SD])速率较短的缩短QT间隔(QTC)。男性低于350毫秒的截止值,女性的360毫秒来自人口正常值(Tristani-Firouzi,2014年)。仅存在短QTC间隔不会使SQT诊断。临床病史,家族史,其他心电图检查结果和基因检测可用于确认诊断。一般测试策略,对疑似先天性LQT,儿茶酚胺能多态性心脏心动过速(CPVT)的患者进行测试,或者如果已经鉴定出来,应从已知的家族变体开始测试。如果无法获得家庭成员的遗传诊断,则可以通过单基因测试或面板测试进行测试。在加利福尼亚医疗政策的蓝盾:评估遗传面板实用性的一般方法中,概述了面板测试的临床实用性的评估。心脏离子通道病的面板是诊断测试面板,可能属于几个类别之一:包含单个疾病的变体的面板;包括
Garr,E.,Padovan-Hernandez,Y.,Janak,P.H。,&Delamater,A.R。 (2021)。 维持目标指导的控制,并过度训练比率时间表。 学习与记忆,28,435-439。 doi.org/10.1101/lm.053472.121 Cheng,Y.,Xie,X.,Lu,J.,Gangal,H. (2021)。 在背纹状体中轨道纹状体长期增强的光遗传学诱导引起了大鼠持续减少寻求酒精的行为。 Neuropharmacology,191,108560。doi.org/10.1016/j.neuropharm.2021.108560 Garr,E。&Delamater,A.R。 (2020)。 背纹状体中的化学抑制作用揭示了直接和间接途径控制作用测序的区域特异性。 学习与记忆的神经生物学,169,107169。doi.org/10.1016/j.nlm.2020.107169 Garr,E.,Bushra,B.,Tu,N。,&Delamater,A.R。 (2020)。 对间隔时间表的目标指导控制不取决于动作结果相关性。 实验心理学杂志:动物学习与认知,46(1),47-64。 doi.org/10.1037/xan0000229 Garr,E。(2019)。 基底神经节对动作序列学习和性能的贡献。 神经科学和生物行为评论,107,279-295。 doi.org/10.1016/j.neubiorev.2019.09.09.017 Garr,E。&Delamater,A.R。 (2019)。 在动作序列任务中探索动作,习惯和自动性之间的关系。 学习与记忆,26(4),128-132。 doi.org/10.1101/lm.048645.118 Garr,E。(2017)。 (2016)。Garr,E.,Padovan-Hernandez,Y.,Janak,P.H。,&Delamater,A.R。(2021)。维持目标指导的控制,并过度训练比率时间表。学习与记忆,28,435-439。 doi.org/10.1101/lm.053472.121 Cheng,Y.,Xie,X.,Lu,J.,Gangal,H.(2021)。在背纹状体中轨道纹状体长期增强的光遗传学诱导引起了大鼠持续减少寻求酒精的行为。Neuropharmacology,191,108560。doi.org/10.1016/j.neuropharm.2021.108560 Garr,E。&Delamater,A.R。(2020)。背纹状体中的化学抑制作用揭示了直接和间接途径控制作用测序的区域特异性。学习与记忆的神经生物学,169,107169。doi.org/10.1016/j.nlm.2020.107169 Garr,E.,Bushra,B.,Tu,N。,&Delamater,A.R。(2020)。对间隔时间表的目标指导控制不取决于动作结果相关性。实验心理学杂志:动物学习与认知,46(1),47-64。doi.org/10.1037/xan0000229 Garr,E。(2019)。基底神经节对动作序列学习和性能的贡献。神经科学和生物行为评论,107,279-295。doi.org/10.1016/j.neubiorev.2019.09.09.017 Garr,E。&Delamater,A.R。(2019)。在动作序列任务中探索动作,习惯和自动性之间的关系。学习与记忆,26(4),128-132。doi.org/10.1101/lm.048645.118 Garr,E。(2017)。(2016)。纹状体中的录音可以告诉我们有关关联学习的知识?《神经科学杂志》,37(50),12091-12093。doi.org/10.1523/jneurosci.2770-17.2017 Delamater,A.R.,Garr,E.,Lawrence,S。,&Whitlow,J.W。元素,配置和场合设置机制在双条件和图案歧视中。行为过程,137,40-52。doi.org/10.1016/j.beproc.2016.10.013 Garr,E。(2016)。背侧纹状体中音调性中间神经元的异质反应。神经科学杂志,36(12),3412-3413。doi.org/10.1523/JNEUROSCI.0099-16.2016 TALKS 2025 University of Rochester, Del Monte Institute for Neuroscience, Rochester, NY 2024 University of Connecticut, Department of Psychological Sciences, Storrs, CT 2023 Harvard University, Center for Brain Science, Cambridge, MA 2023 International Conference on Learning and Memory, Huntington Beach, CA 2022巴尔的摩大脑系列,巴尔的摩,马里兰州2020年南京医科大学,蒂亚尤恩云药学研讨会,虚拟2019波士顿大学,波士顿大学,系统神经科学中心,波士顿,马萨诸塞州马萨诸塞州,2019年耶鲁大学,纽黑文,纽黑文,CT 2017,2017年Gregynog Assistional Issergiative Inkostice Ankostomessim,Easorlogical,Eastern,Eastern,MAA,MA,MAA,HA,HA,bot,bot boter。费城,宾夕法尼亚州会议海报2024戈登研究会议:新罕布什尔州沃特维尔谷的认知神经生物学。2023神经科学协会,华盛顿特区2023年戈登研究会议:西班牙巴塞罗那儿茶酚胺。
第IX部分 - 出版物的精选出版物清单(过去10年)。注意:这是一个选定的列表,不包括过去10年以来国际期刊中的所有出版物。1。Silvetti,M*。,Lasaponara,S.,Daddaoua,N.,Horan,M。,&Gottlieb,J。(2023)。执行功能和信息需求的强化元学习框架。神经网络,157,103-113。如果(2022):9.66 2。Doricchi,F.,Lasaponara,S.,Pazzaglia,M。,&Silvetti,M。(2022)。左右颞顶点连接(TPJ)作为“匹配/不匹配”享乐机器:TPJ功能的统一帐户。生命评论物理学,42,56-92。如果(2022):9.83 3。Goris,J.,Silvetti,M.,Verguts,T.,Wiersema,J.R.,Brass,M。,&Braem,S。(2021)。自闭症特征与尽管自适应学习率一项动荡的奖励学习任务中的表现较差。自闭症,25(2),440-451。如果(2020):5.689 4。Caligiore,D.,Silvetti*,M.,D'Amelio,M.,Puglisi-Allegra,S。,&Baldassarre,G。(2020)。在平序前阶段,老年痴呆症患者症中儿茶酚胺功能障碍的计算建模。阿尔茨海默氏病杂志,(77)1,275-290。如果(2020):4.472 5。Silvetti*,M.,Vassena,E.,Abrahamse,E。,&Verguts,T。(2018)。 背扣带回脑系统作为增强元学习器。 PLOS计算生物学,14(8),E1006370。 if(2018):4.428 6。 Holroyd,C。B.,Ribas-Fernandes,J.J.,Shahnazian,D.,Silvetti,M。,&Verguts,T。(2018)。Silvetti*,M.,Vassena,E.,Abrahamse,E。,&Verguts,T。(2018)。背扣带回脑系统作为增强元学习器。PLOS计算生物学,14(8),E1006370。if(2018):4.428 6。Holroyd,C。B.,Ribas-Fernandes,J.J.,Shahnazian,D.,Silvetti,M。,&Verguts,T。(2018)。人类中型皮层编码任务进度的分布式表示。国家科学院的会议记录,115(25),6398-6403。if(2018):9.58 7。Silvetti,M.,Lasaponara,S.,Lecce,F.,Dragone,A.,Macaluso,E。,&Doricchi,F。(2016)。左侧腹侧注意系统对无效靶标的反应及其对空间疏忽综合征的影响:多变量fMRI研究。大脑皮层,26(12),4551-4562。if(2016):6.559 8。Verguts,T.,Vassena,E。和Silvetti,M。(2015)。对认知和身体任务的自适应努力投资:神经计算模型。行为神经科学中的边界,9,57。if(2015):3.392 9。E.在奖励预测,结果和选择中分离ACC和VMPFC的贡献。Neuropsychologia,59,112-123。if(2014):3.302 10。E.重叠的神经系统代表认知工作和奖励预期。PLOS ONE,9(3),E91008。 if(2014):3.234 11。 Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。 从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。 神经科学与生物行为评论,46,44-57。 if(2014):8.802 12。 Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。 Neuroimage,84,376-382。 if(2014):6.357 13。PLOS ONE,9(3),E91008。if(2014):3.234 11。Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。 从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。 神经科学与生物行为评论,46,44-57。 if(2014):8.802 12。 Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。 Neuroimage,84,376-382。 if(2014):6.357 13。Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。神经科学与生物行为评论,46,44-57。if(2014):8.802 12。Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。Neuroimage,84,376-382。if(2014):6.357 13。奖励人体内侧皮层中的预期和预测错误:一项脑电图研究。Silvetti*,M.,Seurinck,R.,Van Bochove,M。,&Verguts,T。(2013)。 去甲肾上腺素系统对神经可塑性的最佳控制的影响。 行为神经科学中的边界,7,160。 if(2013):4.16 14。 Silvetti*,M.,Wiersema,J.R.,Sonuga-Barke,E。,&Verguts,T。(2013)。 内侧额叶皮质中的不足增强学习是多巴胺相关动机缺陷的模型。 神经网络,46,199-209。 if(2013):2.076 15。 Silvetti*,M.,Seurinck,R。,&Verguts,T。(2013)。 的价值和预测误差估计是ACC中波动率效应的说明:基于模型的fMRI研究。 Cortex,49(6),1627-1635。 if(2013):6.042Silvetti*,M.,Seurinck,R.,Van Bochove,M。,&Verguts,T。(2013)。去甲肾上腺素系统对神经可塑性的最佳控制的影响。行为神经科学中的边界,7,160。if(2013):4.16 14。Silvetti*,M.,Wiersema,J.R.,Sonuga-Barke,E。,&Verguts,T。(2013)。内侧额叶皮质中的不足增强学习是多巴胺相关动机缺陷的模型。神经网络,46,199-209。if(2013):2.076 15。Silvetti*,M.,Seurinck,R。,&Verguts,T。(2013)。的价值和预测误差估计是ACC中波动率效应的说明:基于模型的fMRI研究。Cortex,49(6),1627-1635。if(2013):6.042