1。简介:attosond Electron动力学,Petahertz光电子和量子力学中的“损失时间”的问题370 2。量子力学中的严重问题:量子跳跃,不确定性关系和Pauli定理371 2.1 Bohr的理论,量子跳跃和时间测量的不确定性; 2.2 Pauli的定理3。量子力学中的时间面孔372 3.1内部和外部时间; 3.2作为量子可观察的时间和时间操作员; 3.3延迟时间4。mandelstam±tamm不确定性关系374 5。量子保真度和量子速度限制375 6。能量±时间不确定性,与时间有关的汉密尔顿人375 7。激光驱动的量子动力学376 8。不确定性关系和电子动力学的速度限制376 9。Keldysh参数和光电子的Petahertz极限378 10。mandelstam±Tamm的不确定性关系和量子进化的信息几何度量379 10.1量子演化的几何形状; 10.2量子保真度和渔民信息; 10.3不确定性关系和cram er±rao绑定11。量子速度极限的非量化性质381 12。热力学不确定性限制382 12.1信息指标和热力学不确定性; 12.2膜蛋白温度阈值的热力学极限13。结论383参考383
我们提出了一种数据处理算法,用于对来自 X 射线偏振仪的二维光电子径迹图像进行角度重建和事件选择。该方法从径迹的初始部分重建光电子的初始发射角,该初始部分是通过连续切割径迹直到图像矩或像素数低于可调阈值而获得的。此外,还执行了拒绝用偏心率和圆度量化的圆形径迹的事件选择,以便最大化考虑调制因子和信号接受之间的权衡的偏振灵敏度。应用径迹选择的调制因子为 26 。6 ± 0 。4 , 46 。1 ± 0 。4 , 62 。3 ± 0 。4 ,和 61 。8 ± 0 。3 %,分别在 2.7、4.5、6.4 和 8.0 keV,使用先前由 Iwakiri 等人分析的相同数据。(2016),其中相应的数字为 26 。9±0 。4 ,43 。4±0 。4 ,54 。4±0 。3 ,和 59 。1 ± 0 。3 %。该方法将偏振计灵敏度在先前提出的波段高能端提高了 5%–10%(Iwakiri 等人。2016 年)。© 2017 Elsevier B.V. 保留所有权利。
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
分立半导体。简介 ................................................................................ 二极管。低频 ...................................................................................................... 二极管。高频(微波、RF) .............................................................................. 晶体管。低频。双极 ...................................................................................... 晶体管。低频。Si FET ............................................................................. 晶体管,单结 ...................................................................................................... 晶体管,低噪声、高频、双极 ............................................................................. 晶体管,高功率、高频、双极 ............................................................................. 晶体管,高频、GaAs FET ............................................................................. 晶体管,高频、Si FET ............................................................................. 晶闸管和 SCR ............................................................................................................. 光电子、检测器、隔离器、发射器 ............................................................................. 光电子、字母数字显示器 ............................................................................. 光电子、激光二极管 ............................................................................................. TJ 测定 ............................................................................................................. 示例 .............................................................................................................................
自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
OIDA 版权所有 2002 光电子产业发展协会 本报告中包含的所有数据均为 OIDA 所有,未经光电子产业发展协会事先书面许可,不得以原件或复制形式分发给客户内部组织以外的任何人。 出版者: 光电子产业发展协会 1133 Connecticut Avenue, NW, Suite 600 Washington, DC 20036 电话:(202) 785-4426 传真:(202) 785-4428 互联网:http://www.oida.org 赞助者: 光电子产业发展协会 (OIDA) 国家电气制造商协会 (NEMA) 能源部 – 建筑技术、州和社区计划办公室 (DOE-BTS) 编辑:Jeff Y. Tsao Sandia 国家实验室 P.O. Box 5800 Albuquerque, NM 87185-0601 电话:(505) 844-7092 传真:(505) 844-3211 电子邮件:jytsao@sandia.gov 互联网:http://lighting.sandia.gov
第四届先进技术光电子和纳米材料国际会议(icONMAT 2025)将于 2025 年 2 月 11 日至 14 日在科钦科技大学举行。本次活动是前身为 OMTAT(先进技术光电子材料和薄膜)的系列活动的第四场。会议将提供一个平台来展示新材料合成和设计及其应用的最新方法,例如气体传感器、光催化、燃料电池、太阳能电池、光学、透明电子、高清显示器等。会议汇集了从事光电子材料和器件的制造、特性和建模等各个方面的科学家和工程师,讨论该领域的最新发展。我们欢迎大家参加这次科学盛会。
Benjamen P. Reed* 1 , David J. H. Cant 1 , Steve J. Spencer 1 , Abraham Jorge Carmona-Carmona 2 , Adam Bushell 3 , Alberto Herrera-Gómez 2 , Akira Kurokawa 4 , Andreas Thissen 5 , Andrew G. Thomas 6 , Andrew J. Britton 7 , Andrzej Bernasik 8 , Anne Fuchs 9 , Arthur P. Baddorf 10 , Bernd Bock 11 , Bill Theilacker 12 , Bin Cheng 13 , David G. Castner 14 , David J. Morgan 15 , David Valley 16 , Elizabeth A. Willneff 17 , Emily F. Smith 18 , Emmanuel Nolot 19 , Fangyan Xie 20 , Gilad Zorn 21 , Graham C. Smith 22 , Hideyuki Yasufuku 23 , Jeffery Fenton 24 , Jian Chen 20 , Jonathan D. P. Counsell 25 , Jörg Radnik 26 , Karen J. Gaskell 27 , Kateryna Artyushkova 16 , Li Yang 28 , Lulu Zhang 4 , Makiho Eguchi 29 , Marc Walker 30 , Mariusz Hajdyła 8 , Mateusz M. Marzec 8 , Matthew R. Linford 31 , Naoyoshi Kubota 29 , Orlando Cortazar- Martínez2,Paul Dietrich 5,Riki Satoh 29,Sven L. M. Schroeder 7,Tahereh G. Avval 31,Takaharu Nagatomi 32,Vincent Fernandez 33,Wayne Lake 34,Wayne Lake 34,Yasushi Azuma 4,Yasushi Azuma 4,Yusuke Yusuke Yoshikawa 355,36,and Alexander G./alexander G.
Benjamen P. Reed* 1 , David J. H. Cant 1 , Steve J. Spencer 1 , Abraham Jorge Carmona-Carmona 2 , Adam Bushell 3 , Alberto Herrera-Gómez 2 , Akira Kurokawa 4 , Andreas Thissen 5 , Andrew G. Thomas 6 , Andrew J. Britton 7 , Andrzej Bernasik 8 , Anne Fuchs 9 , Arthur P. Baddorf 10 , Bernd Bock 11 , Bill Theilacker 12 , Bin Cheng 13 , David G. Castner 14 , David J. Morgan 15 , David Valley 16 , Elizabeth A. Willneff 17 , Emily F. Smith 18 , Emmanuel Nolot 19 , Fangyan Xie 20 , Gilad Zorn 21 , Graham C. Smith 22 , Hideyuki Yasufuku 23 , Jeffery Fenton 24 , Jian Chen 20 , Jonathan D. P. Counsell 25 , Jörg Radnik 26 , Karen J. Gaskell 27 , Kateryna Artyushkova 16 , Li Yang 28 , Lulu Zhang 4 , Makiho Eguchi 29 , Marc Walker 30 , Mariusz Hajdyła 8 , Mateusz M. Marzec 8 , Matthew R. Linford 31 , Naoyoshi Kubota 29 , Orlando Cortazar- Martínez2,Paul Dietrich 5,Riki Satoh 29,Sven L. M. Schroeder 7,Tahereh G. Avval 31,Takaharu Nagatomi 32,Vincent Fernandez 33,Wayne Lake 34,Wayne Lake 34,Yasushi Azuma 4,Yasushi Azuma 4,Yusuke Yusuke Yoshikawa 355,36,and Alexander G./alexander G.