人们通常必须在太复杂的环境中做出决定,无法理解。政策制定者评估其潜在治疗效果的社会计划是异质性,高度非线性或溢出的社会计划。监管机构为复杂的人工智能模型设计规则,而在社会中部署了这些模型,而没有真正知道这些模型的工作方式。对决策者的有用是多么有用,可以理解其环境的解释?在本文中,我们通过考虑决策者(此后DM)的问题来研究这个问题,该决策者遇到了一个太复杂而无法理解的模型,而必须依靠对其进行解释。DM的收益取决于其行动和世界状态,在这些行动和输入中描述了后者。输入遵循已知分布,单个真实模型指定输入和输出之间的关系。例如,这种真实的模型可能是自然界中发生的相关数据生成过程(DGP),或者是由复杂的人工系统(例如大型统计或人工智能(AI)模型)引起的DGP。我们设置的关键新颖特征是,真实模型的空间比DM可以理解的可理解模型的空间大得多。例如,真实模型的空间可能包含所有深神经网络,但是可理解模型的空间可能仅包含n级多项式。要使DM将有关真实模型的信息合并到其选择的选择中,必须首先通过将其映射到可理解的模型来解释真实模型。同样,regu-将重点放在DM中掩盖模型的主要因素上,我们抽象出可能在此解释过程中涉及的任何抽样误差。我们需要遵守两个标准的真实模型空间和可理解模型的空间(我们称为解释器)之间的映射。首先,如果真实模型已经可以理解,则解释器不应用不同的模型来解释它。第二,如果真实模型是由独立于状态的随机设备生成的两个模型的混合物(例如,一个模型持有一半的时间;另一个模型,另一半),则真实模型的解释应该是这两个模型的解释的混合。一起,这些标准等于解释器是对可理解模型空间的真实模型的线性投影。此类包含用于解释模型的大多数工具,包括政策评估中的线性回归和机器学习中的本地近似值。本文的设置捕捉了许多情况,在这些情况下,决策者面对需要解释的符合模型。,例如,决策者经常评估其治疗效果(输出)取决于受影响人群(输入)的人口特征(输入)(真正的模型),而决策者必须选择要实施的程序(行动)。
2023 年 2 月 15 日——环境。化学品泄漏。(危险品)/化学、生物、放射或核事故……其他外交决策者或军事控制。政治。
11 Denoeux,Dubois和Prade(2020)和Caprio等。 (2023)主张在AI中使用不精确的概率。 ilin(2021)考虑了一种决策理论,该理论允许对自主安全系统中应用的歧义厌恶。 众所周知,歧义厌恶导致信息厌恶(Al-Najjar和Weinstein 2009)。 12作为一个匿名裁判指出,如果在替代决定理论之后设计AI代理会产生重大风险,那么也许我们不应该这样做,并学会与那些对风险和歧义不敏感的代理人生活。 虽然这是一个合理的观点,但我们许多人对风险和歧义敏感,可能希望AI代理反映这些偏好。 如果AI代理不能这样做,这是一个巨大的成本。 13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。。 决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。 这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。11 Denoeux,Dubois和Prade(2020)和Caprio等。(2023)主张在AI中使用不精确的概率。ilin(2021)考虑了一种决策理论,该理论允许对自主安全系统中应用的歧义厌恶。众所周知,歧义厌恶导致信息厌恶(Al-Najjar和Weinstein 2009)。12作为一个匿名裁判指出,如果在替代决定理论之后设计AI代理会产生重大风险,那么也许我们不应该这样做,并学会与那些对风险和歧义不敏感的代理人生活。虽然这是一个合理的观点,但我们许多人对风险和歧义敏感,可能希望AI代理反映这些偏好。如果AI代理不能这样做,这是一个巨大的成本。13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。。 决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。 这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。
如今,人工智能越来越多地被用于许多高风险决策应用中,其中公平性是一个重要问题。目前,已经有许多人工智能存在偏见并做出可疑和不公平决策的例子。人工智能研究界提出了许多方法来衡量和减轻不必要的偏见,但其中很少有方法涉及人类决策者的意见。我们认为,由于不同的公平标准有时无法同时满足,并且实现公平通常需要牺牲模型准确性等其他目标,因此,关键是要了解并遵守人类决策者关于如何在这些目标之间进行权衡的偏好。在本文中,我们提出了一个框架和一些示例方法来引出这些偏好并根据这些偏好优化人工智能模型。
2023 年 8 月 16 日——生物监测计划涵盖所有内容。CBRN 健康监测并寻求向决策者提供健康问题的早期预警,以加强保护……
如今,人工智能越来越多地被用于许多高风险决策应用中,其中公平性是一个重要问题。目前,已经有许多人工智能存在偏见并做出可疑和不公平决策的例子。人工智能研究界提出了许多方法来衡量和减轻不必要的偏见,但其中很少有方法涉及人类决策者的意见。我们认为,由于不同的公平标准有时无法同时满足,并且实现公平通常需要牺牲模型准确性等其他目标,因此,关键是要了解并遵守人类决策者关于如何在这些目标之间进行权衡的偏好。在本文中,我们提出了一个框架和一些示例方法来引出这些偏好并根据这些偏好优化人工智能模型。
发生化学、放射性或核事件后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人和自主的监测设备以及确保数据准确性的基础测量基础设施,以协助事件决策者。应预计与工业合作伙伴、监管机构和标准化机构直接合作,以促进所开发技术的采用。关键词
发生化学、放射性或核事故后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人值守和自主监测设备以及确保数据准确性的基础测量基础设施,以协助事故决策者。应预计与工业合作伙伴、监管机构和标准化机构的直接合作,以促进所开发技术的采用。关键词
环境退化(ED)现在是一个全球问题,因为经济活动的扩大。这个问题要求学者和决策者的意图。因此,该论文对东盟地区二氧化碳(CO2)排放的可再生能源(RE)产出,消耗和能源进口(EI)的影响进行了调查。使用2008 - 2021年的世界发展指标(WDI)收集二级数据。该研究还使用矩分解方法(MMQR)方法研究了变量之间的关联。结果表明了东盟经济中二氧化碳排放的RE产出,消费,EI,EG和人口增长。本文为决策者提供了指示,同时制定了与RE生产相关的策略,以减少CO2排放。