Loading...
机构名称:
¥ 2.0

11 Denoeux,Dubois和Prade(2020)和Caprio等。 (2023)主张在AI中使用不精确的概率。 ilin(2021)考虑了一种决策理论,该理论允许对自主安全系统中应用的歧义厌恶。 众所周知,歧义厌恶导致信息厌恶(Al-Najjar和Weinstein 2009)。 12作为一个匿名裁判指出,如果在替代决定理论之后设计AI代理会产生重大风险,那么也许我们不应该这样做,并学会与那些对风险和歧义不敏感的代理人生活。 虽然这是一个合理的观点,但我们许多人对风险和歧义敏感,可能希望AI代理反映这些偏好。 如果AI代理不能这样做,这是一个巨大的成本。 13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。。 决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。 这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。11 Denoeux,Dubois和Prade(2020)和Caprio等。(2023)主张在AI中使用不精确的概率。ilin(2021)考虑了一种决策理论,该理论允许对自主安全系统中应用的歧义厌恶。众所周知,歧义厌恶导致信息厌恶(Al-Najjar和Weinstein 2009)。12作为一个匿名裁判指出,如果在替代决定理论之后设计AI代理会产生重大风险,那么也许我们不应该这样做,并学会与那些对风险和歧义不敏感的代理人生活。虽然这是一个合理的观点,但我们许多人对风险和歧义敏感,可能希望AI代理反映这些偏好。如果AI代理不能这样做,这是一个巨大的成本。13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。。 决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。 这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。13,例如,Skyrms(1990),p。 247写道:“证据隐含地假设决策者是贝叶斯人,而且他知道他会充当一个。决策者认为,如果他执行实验,他将(i)通过条件化进行更新,并且(ii)选择《后贝叶斯法》。这意味着Good的定理也将使不确定他们将最大化预期效用的代理商失败。

不保证的转换

不保证的转换PDF文件第1页

不保证的转换PDF文件第2页

不保证的转换PDF文件第3页

不保证的转换PDF文件第4页

不保证的转换PDF文件第5页

相关文件推荐

2020 年
¥13.0
2023 年
¥24.0
2021 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥4.0
2024 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2002 年
¥36.0
2024 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2022 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2021 年
¥13.0