SGP30 的电气规格如表 3 所示。电源引脚必须用 100 nF 电容去耦,该电容应尽可能靠近引脚 VDD - 参见图 7 。所需的去耦取决于连接到传感器的电源网络。我们还建议将 VDD 和 VDDH 引脚短路。SCL 用于同步微控制器与传感器之间的通信。SDA 引脚用于与传感器之间传输数据。为了安全通信,必须满足 I 2 C 手册 4 中定义的时序规范。SCL 和 SDA 线都是开漏 I/O,带有连接至 VDD 和 VSS 的二极管。它们应连接到外部上拉电阻。为避免信号争用,微控制器必须仅将 SDA 和 SCL 驱动为低电平。需要外部上拉电阻(例如 R p = 10 kΩ)将信号拉高。确定电阻尺寸时,请考虑总线容量和通信频率(有关更多详细信息,请参阅 NXP I 2 C 手册第 7.1 节 4)。应注意,上拉电阻可能包含在微控制器的 I/O 电路中。芯片焊盘或中心焊盘与 GND 电连接。因此,电气考虑不会对芯片焊盘的布线施加限制。但是,为了保证机械稳定性,建议将中心焊盘焊接到 PCB 上。
图 2. 颈部 tSCS 期间的肌肉募集概况。AC) 三位参与者颈部带有不透射线标记(白点)的矢状面 X 射线图像。最上面的标记标识了枕外隆凸的枕骨隆凸。第二和第三个标记分别标识了距离枕骨隆凸 7 厘米和 9.2 厘米的点,表示假定电极阵列的第一行和第三行,该电极阵列的第一行电极与枕骨隆凸 7 厘米对齐。最后一个标记标识了假定电极阵列最后一行的位置,距离枕骨隆凸 15.7 厘米。颈部标签标记了相应背根的出口点。DF) 通过 8 个电极行中的每一行由 tSCS 介导的所有刺激幅度中 5 块肌肉的平均激活度。GI) 导致 5 块肌肉中的每一块最大激活的刺激幅度。
1 数学框架 5 1.1 希尔伯特空间. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 无界算子和谱测度. . . 13 1.3 量子理论的概率结构. . . . . 16 准备. . . . . . . . . . . 17 测量. . . . . . . . . . . . 19 概率. . . . . . . . . . . . . 20 可观测量和期望值. . . . . . 23 1.4 凸性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 凸集和极值点 . . . . . . . . . . . . . . . . . 25 状态混合 . . . . . . . . . . . . . . . . . . . 26 主化 . . . . . . . . . . . . . . . . . . . 27 凸泛函 . . . . . . . . . . . . . . . . . 29 熵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 复合系统和简化系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Choi 矩阵 . ...
我认为在可预见的未来,电阻器、电容器和二极管仍将使用导线;它们用于维修目的和更高功率的电路。表面贴装元件最适合由自动化机械组装的电路和高频应用,在这些应用中,传统元件会产生过多的杂散电容。更关键的问题是,许多较新的 IC 仅以表面贴装形式提供,因此您无法将它们插入无焊面包板。您甚至无法将它们插入其他类型的插座;它们只能通过焊接到印刷电路板上才能使用。一种选择是使用印刷电路进行面包板制作,就像我们许多人在 DIP 封装的早期所做的那样,那时无焊面包板还没有普及。制作一块印刷电路板,将 IC 连接到焊盘或孔阵列;然后添加您想要的任何组件。甚至可以将 IC 连接到一排插针,插入无焊面包板。现成的电路板可以同时完成这两件事,称为“冲浪板”,由 Capital Advanced Technologies 制造,地址为 309 Village Drive #A, Carol Stream, IL 60188;网址:www.capitaladvanced.com;电话:630 -690 -1696;可从许多分销商处购买,包括 Digi-Key,地址为 701 Brooks Ave. S., Thief River Falls, MN 56701;电话:800 -344 -4539;网址:www.digikey.com。图 2 显示
• 为提高性能,晶圆工艺技术的快速发展推动了 HKMG 和 FinFET 等可靠性极限。 • 晶圆上新材料的加速引入:铜、超低 k ILD、气隙、氮化氧化物、高 K 栅极电介质和新互连 • 先进的封装和凸块技术:fcBGA、fcCSP、WLCSP、无铅凸块、铜柱、铜线、微凸块、多层 RDL、TSV/Interposer、3D/2.5D、FanOut WLP 封装和 SiP • 新封装材料:增材制造基板、超低损耗电介质、底部填充材料、塑封材料、基板表面处理、无铅和铜凸块等 • 多级应力相互作用使可靠性失效机制变得复杂 • 日益严格的客户要求和应用 • 快速上市需要可靠性设计以减少认证/批量生产时间
摘要 本研究比较了安装在具有 LGA 封装的主板上的 BGA 和 LGA 封装的板级可靠性。评估了 SMT 产量、跌落测试性能和热循环性能。还使用了有限元分析与测量的可靠性测试进行比较。BGA 和 LGA 器件均能很好地自对准,没有开路、短路或不一致的焊点。封装偏离焊盘的距离不得超过 0.200 毫米,焊膏误印必须限制在 0.050 毫米以内。在高达 3042 个温度循环中,焊点没有确认故障。模拟预测 LGA 封装的疲劳寿命应比 BGA 封装长 1.5 倍,因为其周边 I/O 焊盘更大,并且模块内部有额外的接地焊盘。在高达 400 次的跌落测试中没有出现故障。总体而言,这两个模块都表现出了出色的板级可靠性,远远超出了典型的消费产品要求。
船体结构正在使用屈服强度最低为 100,000 psi 的高强度低合金淬火回火钢。船舶结构委员会发起了一个项目,以确定应使用哪些机械性能作为性能标准,评估这些标准对大型测试焊件的适用性,并选择与大型测试相关的小型实验室测试。对可用的机械性能数据和各造船厂使用这些材料的调查导致建议进行某些实验室调查。本报告描述了对高强度低合金板和焊件进行的小规模和大规模测试的结果。这些测试表明,8 英寸长的缺陷可以在低于材料屈服强度的应力下引发快速断裂,结构抗断裂性可以通过加强筋来提高,并且焊件的抗断裂性可以等于基板的抗断裂性。
摘要 — 为满足对小型天线、更高性能和更低成本的需求,大多数下一代架构都要求更高的集成电路 (IC) 芯片集成度。与传统封装配置相比,2.5D 和 3D 等先进芯片封装技术提供了更高的芯片兼容性和更低的功耗。鉴于这些优势,采用先进封装是不可避免的。在先进封装中,铜柱互连是一项关键的支持技术,也是下一个合乎逻辑的步骤。该技术提供了多种优势,包括提高抗电迁移能力、提高电导率和热导率、简化凸块下金属化 (UBM) 和提高输入/输出 (I/O) 密度。铜柱允许的细间距有助于该技术取代焊料凸块技术,后者的最小间距约为 40 微米。更细的间距允许更高的 I/O 数量,从而提高性能。在本研究中,成功展示了在高密度中介层上超薄单片微波集成电路 (MMIC) 氮化镓 (GaN) 细间距铜柱倒装芯片组件的组装。使用 150 毫米间距铜柱倒装芯片,评估了有机印刷电路板 (PCB) 和硅中介层的组装工艺,并评估了化学镀镍浸金 (ENIG) 和共晶锡铅焊盘表面处理。对于 2D/2.5D/3D 组装工艺开发,使用了标准的内部拾取和放置工具,然后进行大规模焊料回流,最后进行底部填充以进行可靠性测试。互连稳健性由芯片拉力强度、助焊剂冲压调查和横截面决定。完成了 GaN 铜柱倒装芯片 2D 组装的完整可靠性和鉴定测试数据,包括 700 次温度循环和无偏高加速温度/湿度应力测试 (UHAST)。将铜柱技术添加到 GaN MMIC 芯片中,将 GaN Cu 柱技术集成到 2.5D/3D 封装技术中,并在中介层级评估 GaN Cu 柱互连可靠性都是这项工作的独特之处。
摘要衍生焊接过程在许多情况下能够改变决定焊珠形成基本方面的现象。这些演变中的某些演变作用于电线馈电动力学。但是,在这种情况下,尚未完全探索线饲料脉动对焊珠形成因子的影响。因此,这项工作旨在检查电线进料脉动方法如何影响气体金属电弧焊接中的液滴转移以及其与熔融池的相互作用如何定义焊珠穿透。通过改变电线馈电频率而产生的磁带焊接,但保持相同水平的电弧能量和电线进料速度,电源以恒定的电压和电流模式运行。为了评估液滴转移行为,使用了高速成像。根据融合渗透比较了焊珠的几何形状。结果表明,线进料脉动频率的增加加剧了液滴的脱离频率,有可能完成稳定的金属转移,直接将其直接投射到焊接池,这有助于集中的渗透率。基于描述性模型,人们认为,由于电线饲料搏动而导致的液滴动量或动能的增加不足以证明渗透性增强的合理性。可以得出结论,电线进料动力学还可以刺激焊池中的表面张力变化,从而破坏其质量和热对流的行为,从而支持融合渗透。
摘要。使用定向能量沉积 (DED) 工艺(例如电弧增材制造 (WAAM))制造零件时,需要确定沉积路径和操作参数(送丝速度、焊枪速度、能量)。虽然操作参数会影响制造的焊珠的几何形状,但沉积轨迹会影响这些焊珠排列以填充目标形状的方式。焊珠几何形状对热条件(难以准确管理)的强烈依赖性使得选择适当的参数变得复杂。可以通过多种方式解决该问题,本文提出了一种根据零件的当前状态(模拟或测量)和制造或几何约束确定轨迹和操作参数的方法。提出的方法分为两个阶段: