使用小分子抑制剂针对蛋白质的酶功能以及使用小分子激动剂和拮抗剂针对受体蛋白的功能是小分子药物开发的主要形式。这些小分子调节剂基于传统的占用驱动药理学方法。对于传统上被认为无法被小分子调节剂用药的蛋白质组空间,例如具有支架功能的酶、转录因子和缺乏明确的小分子结合位点的蛋白质,靶向蛋白质降解剂提供了使用事件驱动药理学方法对蛋白质组进行用药的机会。降解分子(PROTAC 或分子胶)将目标蛋白质 (POI) 和 E3 泛素连接酶拉近并与泛素-蛋白酶体系统 (UPS)(用于降解 POI 的细胞废物处理系统)结合。为了开发靶向蛋白质降解剂来满足治疗需求,将从几个方面考虑,即致病蛋白质的选择性降解、超出 Lipinski 五规则 (bRo5) 范围的降解剂的口服生物利用度、新的 E3 泛素连接酶和分子胶降解剂的需求以及新药物模式的耐药性。本综述将说明靶向蛋白质降解药物发现和开发中几个未被充分讨论的关键考虑因素:1)影响 PROTAC 分子选择性的因素以及 PROTAC 的设计以选择性降解协同病理蛋白质;2)结合多组学方法开发检测方法,以鉴定新的 E3 连接酶及其相应的配体以及分子胶降解剂;3)分子设计以提高 bRo5 PROTAC 的口服生物利用度;4)降解剂的耐药性。
摘要口头途径是最方便的,并且在采用新化学实体方面具有很大的有效性;因此,它改善了患者的接受。但是,与此类配方相关的主要局限性涉及不愉快或苦味的味道,以及与化学实体的吞咽和降低和降低的生物利用度有关的问题。在孩子方面,主要限制是他们不能以片剂和胶囊的形式安全地吞下药物。但是,孩子,即使没有牙齿的孩子也可以轻松吞咽果冻。在为每个孩子,品味,颜色,气味,质地和外观的新剂型形式开发中,是改善患者依从性的重要因素。孩子们拒绝再次容忍同种药物,这对于试图服用药物的父母来说是一个大问题。解决此类问题的有效方法涉及儿童友好剂量配方,具有吸引人和醒目的味道,气味,颜色和质地。口服果冻最相同的特征是剂型的形式,即很容易咀嚼和溶解在唾液中,因此不需要水。此外,良好的质地和外观使吸引患者以及提高患者依从性变得容易。最重要的是,它提供了柔软而美丽的质地,不会给患者带来不适。关键字:果冻,胶凝剂,第一频道代谢,改善生物利用度。国际药品保证杂志。2024; 15(2):1023-1034。支持来源:零。利益冲突:无。国际药品保证杂志(2024); doi:10.25258/ijpqa.15.2.73如何引用本文:Komal K,Nilesh K,Vaibhav B,Rakesh A.口服果冻的表述,开发和表征以提高治疗效果。
参考文献:1。澳大利亚统计局澳大利亚健康调查2011-13水果和蔬菜消费。2023年3月访问。http://www.abs.gov.au/ausstats/aabs@.nsf/lookup/lookup/by%20subject/4364.0.55.001~2017-18-2017-18~main%20特征〜Fruit%20AND%20 and%20和20 vetegetable foregetable%20COMEMPTION〜20CONSUMPTION〜105 2.fsanz。食品标准代码标准1.2.7健康及相关索赔附表4。3.为保护您的心脏的健康饮食。心脏基金会澳大利亚。2023年3月访问。https://www.heartfoundation.org.au/bundles/healthy-living-living-and-anding/healthy-eating 4.Hoca,M。,M。等。白藜芦醇和槲皮素对胰腺癌干细胞上皮 - 间质转变的影响。营养与癌症,2020年; 72,1231–1242。5.Serino A等。多酚可抵抗血管炎症,衰老和心血管疾病的保护作用。营养素2019; 11(1):53。6.Patel RV等。槲皮素作为心血管剂的治疗潜力。Eur J Med Chem。 2018年7月15日; 155:889-904。 7.Somerset SM,Johannot L.澳大利亚成年人的饮食类黄酮来源。 营养癌。 2008; 60(4):442-9。 8.Terao J. 因素调节槲皮素相关类黄酮的生物利用度及其血管功能的后果。 Biochem Pharmacol。 2017年9月1日; 139:15-23。 9.Lee J,Mitchell AE。 健康人中苹果和洋葱吸收槲皮素的药代动力学。 J农业食品化学。 2012年4月18日; 60(15):3874-81。 10.Hollman PC等。 febs lett。Eur J Med Chem。2018年7月15日; 155:889-904。 7.Somerset SM,Johannot L.澳大利亚成年人的饮食类黄酮来源。 营养癌。 2008; 60(4):442-9。 8.Terao J. 因素调节槲皮素相关类黄酮的生物利用度及其血管功能的后果。 Biochem Pharmacol。 2017年9月1日; 139:15-23。 9.Lee J,Mitchell AE。 健康人中苹果和洋葱吸收槲皮素的药代动力学。 J农业食品化学。 2012年4月18日; 60(15):3874-81。 10.Hollman PC等。 febs lett。2018年7月15日; 155:889-904。7.Somerset SM,Johannot L.澳大利亚成年人的饮食类黄酮来源。营养癌。2008; 60(4):442-9。 8.Terao J. 因素调节槲皮素相关类黄酮的生物利用度及其血管功能的后果。 Biochem Pharmacol。 2017年9月1日; 139:15-23。 9.Lee J,Mitchell AE。 健康人中苹果和洋葱吸收槲皮素的药代动力学。 J农业食品化学。 2012年4月18日; 60(15):3874-81。 10.Hollman PC等。 febs lett。2008; 60(4):442-9。8.Terao J.因素调节槲皮素相关类黄酮的生物利用度及其血管功能的后果。Biochem Pharmacol。2017年9月1日; 139:15-23。9.Lee J,Mitchell AE。健康人中苹果和洋葱吸收槲皮素的药代动力学。J农业食品化学。2012年4月18日; 60(15):3874-81。10.Hollman PC等。febs lett。人类各种食物的抗氧化剂类黄酮槲皮素的相对生物利用度。1997年11月24日; 418(1-2):152-6。 11.Rodov V等。 紫外线刺激剥离洋葱中的黄酮醇积累,并控制其表面上的微生物。 J农业食品化学。 2010年8月25日; 58(16):9071-6。 12.Petropoulos S等。 蔬菜有机硫化合物及其健康促进作用。 curr pharm des。 2017; 23(19):2850-2875。1997年11月24日; 418(1-2):152-6。11.Rodov V等。紫外线刺激剥离洋葱中的黄酮醇积累,并控制其表面上的微生物。J农业食品化学。2010年8月25日; 58(16):9071-6。12.Petropoulos S等。蔬菜有机硫化合物及其健康促进作用。curr pharm des。2017; 23(19):2850-2875。2017; 23(19):2850-2875。
The natural diversity of acyltransferases reveals versatility and specificity in the synthesis of gene-encoded lipopeptides 28 Anti-inflammatory biscembranoids from aquaculture-derived soft coral Sarcophyton trocheliophorum 29 Integration of Caenorhabditis elegans bioactivity assays for a sustainable identification of health promoting natural products 30 Novel natural product inhibitors targeting oncogenic MAPK/ERK and PI 3 K/AKT signaling in melanoma: from large library screening to target identification 31 Towards the engineering of the plant endoplasmic reticulum for sustainable production of specialized metabolites 32 PKC-α activation with new semi-synthetic 7 α-acetoxy- 6 β-hydroxyroyleanone derivatives for breast cancer therapeutics 33 Development of a high基于吞吐细胞的测定方法以突出针对呼吸性合胞病毒(RSV)的潜在生物活性抗病毒天然产物34在体外模型中预测异类亚品c-糖苷,o-糖苷的口服生物利用度,o-糖苷的生物利用度,其Aglycons及其Aglycons 35 Dracaena biflibity biflibing cambiflits firscons firops firscons firscons firscons firops firs in consossion compacts firops in in consoscome and inducing the key ferroptosis suppressor FSP 1 36 Dietary molecules from Glycyrrhiza foetida and their modulation on metabolic syndrome pathways 37 How to make “extreme” CPC greener: how to substitute alkanes in biphasic solvent systems using COSMO-RS predicting tools 38 Investigating the anxiolytic activity of selected essential oils in zebrafish larvae and identification使用生物学计量学39
•最先进的配方设备:CFS配备了尖端设备,包括喷雾干燥和热融化挤出(HME)。用于喷雾干燥,CFS使用Buchi-290进行实验室规模开发,而GEA PSD-1用于制造临床样品和早期商业批次。在HME设备方面,CFS使用Thermo Fisher Rheomer进行流变学研究和早期配方筛查,以及Leistritz 12 mm和18 mm HME设备,用于实验室规模,飞行员规模和早期商业制造。这种全面的设置可确保配方的稳健性能和最佳生物利用度。
体外数据显示,ASC10 对 SARS-CoV-2 具有显著活性。ASC10 是公司内部发现的候选药物,拥有全球知识产权和商业权利。与美国食品药品监督管理局 (FDA) 批准的 RdRp 靶向 Molnupiravir 相比,ASC10 具有新的差异化化学结构。歌礼已为多种化合物和用途提交了专利申请。动物研究表明,与 Molnupiravir 相比,ASC10 具有更高的生物利用度。歌礼计划于 2022 年上半年在中国、美国等地提交临床试验的试验药物申请 (IND)。
介绍:卵巢癌是妇科系统的顽固恶性肿瘤,死亡率很高。Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。 但是,其临床应用受到差的生物利用度的阻碍。 已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。 因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。 方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。 模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。 在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。 结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。 药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。 MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。 体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。 关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。但是,其临床应用受到差的生物利用度的阻碍。已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付结论:我们通过全身给药设计了可注射的DTX-CUR/M纳米细胞,用于DTX和Cur剂的共递送到肿瘤部位。DTX-CUR/M纳米固体将是一种可生物降解,可持续和强大的抗肿瘤药物候选者,具有巨大的卵巢癌治疗潜力。
摘要。本文研究了使用药用植物作为微生物生长刺激剂的来源。的重点是研究药物中存在的不同类型的生物活性化合物,例如生物碱,萜类化合物,类黄酮和酚酸及其对微生物的作用。讨论了这些化合物提取的方法,包括传统和现代方法,例如超临界流体提取,超声和微波提取。还讨论了提高这些兴奋剂的特性的各种方法,包括使用纳米技术和化学修饰,以增强其生物利用度和功效。该研究强调了这些化合物在农业和药物中的潜在应用,尤其是在益生菌开发和土壤健康改善中。
微生物可以产生生物表面活性剂,因为它们是增加疏水化合物的生物利用度的关键药物,这可以用作微生物生长的碳源。1因此,产生生物表面活性剂的细菌可以进入疏水相,并代谢多种脂肪液烃和多环芳烃(PAHS)。生产表面活性剂的细菌也发现了许多商业应用,尤其是在修复环境中去除烃污染物和重金属的补救措施。2纯化的细菌表面活性剂已被用于控制食品中的病原体,3作为食品工业中的乳液稳定剂,4用于药物输送,5作为针对植物病原体的有效且环保的生物农药,6和美容工业中。7
除了食欲调节外,饮食纤维还通过改变养分的吸收和代谢来影响能量平衡。纤维通过将脂肪和碳水化合物捕获在其基质中,从而降低食物中卡路里的生物利用度,从而限制其消化和吸收。这意味着在高纤维餐中消耗的一些卡路里被排出而不是被人体使用,从而有效地降低了整体卡路里的摄入量。此外,结肠中某些纤维的发酵产生短链脂肪酸(SCFA),例如乙酸盐,丙酸和丁酸酯。这些SCFA已被证明会影响能量稳态,减少脂肪的积累并提高胰岛素敏感性,所有这些都有助于体重管理。