物理尺寸/重量4 I/O插槽6.2“ W x 8.7” d x 7.1“环境*电气隔离350 VRMS温度(工作)-40°C至70°C温度(存储)-40°C至85°C湿度0至95%,非调节MILSD-810G振动MIL-STD-810G以及下面的IEC Specs(IEC 60068-2-64)10–10006 000-1-1-1-1--BS,5 G(IEC 60068-2-64) 10–500 Hz,5 g,正弦电击MIL-STD-810G加上以下IEC标准(IEC 60068-2-27)100 g,半正弦3 ms,6个方向的18个冲击; 30 g,11毫秒半正弦,在6个方向高70,000英尺的18次冲击,最大EMI/RFI旨在满足MIL-STD-461功率需求电压9-36 VDC(115/220 VAC适配器可用)功率8 W(不包括I/O BOBARDS)功率质量需求,旨在满足MIL-STD-1275 MIL-STD-1275 MIL-STD-1275 MIL-STD-120,000,000,000,000,000,000> 130,000,000,000,000
摘要:随着近几十年来技术的发展,并实施了减少温室气体排放的国际标准,汽车制造商将注意力转向了与电/混合动力汽车和电动燃料电池汽车有关的新技术。本文着重于电动燃料电池车辆,将电池和以电池和超级电容器代表的混合储能系统最佳结合起来,以满足电动机和辅助系统所需的动态功率需求。本文比较了燃料电池电动汽车的最新提议的拓扑结构,并揭示了涉及的新技术和DC/DC转换器,以使研究人员和开发人员对这一专业领域感兴趣。从软件的角度来看,分析了最新的能源管理策略并将其与参考策略进行比较,并考虑了绩效指标,例如能源效率,氢消耗和涉及的子系统的退化,这是汽车降低者的主要挑战。讨论了三种策略(基于规则的策略,基于选择的策略和基于学习的策略)的优点和缺点。因此,未来的软件开发器可以专注于开发的人工智能领域的新控制算法,以应对新技术对自动驾驶汽车的挑战。
根据结果,可以注意到,虽然由于高短路功率而在电网附近的总线634上不变电压,但与分散的混合DG相比,与对电压改善的单个位置集成相比,它会随着偏离网格的转移而增加。此外,可以看出,尽管电压下降是Bus 675的最高,但由于混合DG系统,该下降可以得到补偿。此外,直到达到06.00,PV系统才发电。因此,需求功率由WTG和网格提供。由于工业工厂的生产活动,基本案例的节点电压在白天有所不同。可以清楚地看出,尽管需求功率在13.00到16.00之间降低,但混合DG的总功率增加了。因此,电压调节升高。另一方面,虽然需求功率在16.00到18.00之间增加,但混合DG产生的总功率也会降低,电压调节也降低了。除了评估外,整个系统的总功率需求是2370 kW。因此,与前一个小时相比,每次总线的加载条件增加。由于与总线634中的标称功率需求相比,负载增加大于其他总线的增量,因此电压
抽象的紧凑型材料结构构造具有一定程度的内置智能,这是对易于交付的刺激的响应,这对于材料驱动的机器人非常需要。我们在这里报告了可见的光驱动的,双重响应的二氧化碳(Co-MNO 2)的双重响应材料,该材料在速度和功率需求方面表现出较高的致动性能,并且在光照明下具有降低的电阻率。致动特性可通过控制掺杂的量,然后进行电化学处理以激活该驱动,并且电阻变化方便地用作控制驱动的内置反馈信号。利用这些特性,构成了〜4 mW/cm 2的自感应可见光强度的紧凑型微生物设备,以沿多个可选的配置途径进行复杂的运动。在这些设备中证明了智能机器人功能,包括自我适应载荷提升,对象排序和按需结构僵硬。此处所展示的概念开辟了使用多含量响应材料创建机器人智能的观点。
摘要。偏远地区人群所面临的问题之一是基础设施无法用于发电的问题。可用的河流可用于产生电能。开发的系统必须便宜,易于操作和可靠。它应该配备监视系统以显示输出。这项研究旨在开发一家冰球电厂及其监测系统,以满足偏远地区的电力需求。电厂由一个小型涡轮机,一个发电机,电池充电器和电池组成,而监视系统由当前传感器,电压传感器,Arduino Nano和显示器组成。该系统在实验室和河流中进行了测试。DC电压传感器,AC电压传感器和DC电流传感器的测试分别产生1.88%,5.24%和1.25%的误差。无负载测试表明,当在696-1363 rpm旋转时,系统的电压为12.77-16.6 VDC和224-245 VAC。加载后,系统会在1332-1564 rpm旋转时生成12-12.8 VDC和225-247 VAC的电压。偏远地区的人们可以使用开发的系统来满足其功率需求。
混合储能系统 (HESS) 由两种或两种以上类型的储能组件以及连接它们的电力电子电路组成。因此,该系统的实时容量高度依赖于系统状态,不能简单地用传统的电池模型来评估。为了应对这一挑战,本文提出了一种等效充电状态 (ESOC),它反映了特定运行模式下 HESS 单元的剩余容量。此外,所提出的 ESOC 还应用于分布式 HESS 的控制,该 HESS 包含多个具有自己本地目标的单元。为了在这些单元之间最佳地分配总功率目标,提出了一种基于稀疏通信网络的分层控制框架。该框架从功率输出能力和 ESOC 平衡两个方面考虑了 HESS 中的分布式控制和最佳功率分配。基于一次下垂控制,根据每个单元的最大输出容量分配总功率,并使用二次控制从 ESOC 平衡的角度调整功率。因此可以控制每个储能单元来满足微电网局部的功率需求,基于MATLAB/Simulink的仿真结果验证了所提等效SOC应用的有效性。
摘要 — 太阳能汽车在能源管理技术(包括光伏和储能系统)方面仍然存在局限性。能源效率和轻量化是汽车成功的重要因素。为了实现这一目标,本文选择了 5 kWh 锂离子电池、2 kW 轮内轴向磁通永磁无刷直流电机(额定电压为 48 V)和 1035 W 单晶 PV 模块来满足这些限制。此外,超级电容器用作第二个储能装置,以利用快速充电和放电的优势。降压-升压转换器旨在调节 PV 板、电池和超级电容器这三个电源的输出电压。为了从 PV 模块中获取最大功率,通过使用 Matlab/Simulink 开发 PV 模型,研究了 PV 模块 IV 和 PV 特性在太阳辐射和温度的影响下。此外,还开发并实施了最大功率点跟踪器模型,使用扰动和观察技术来选择最佳点。此外,在不同的操作条件下,使用前面提到的三个根据负载的功率需求供电的能源来考虑不同的能源管理情况。
legged Robotics最近已转向基于高级优化的控制方法,例如模型预测控制(MPC),以产生敏捷和节能的运动。通过将控制问题作为优化任务,机器人系统可以解释复杂的机器人动态和操作约束,包括关节限制和执行器功能。但是,高性能操作也需要严格考虑板载电池限制。这项工作提出了一种经验得出的锂离子电池模型,该模型捕获了瞬态电压下垂和时间依赖的内部电池状态,从而更准确地预测了可行的动力传递。此外,定制的高功率电池组旨在满足MIT类人动物的功率需求,强调功率密度,安全性和可维护性。尽管本文中介绍的工作并未将电池模型整合到轨迹优化框架中,但它为未来的研究建立了基础,旨在将电池和机器人动力学在机器人控制中逐渐发展。最终,这种方法将通过确保计划的轨迹尊重物理和电化学约束来促进更安全,更有能力的腿部机器人。
摘要 近年来,电池/超级电容器 (SC) 混合储能系统 (HESS) 广泛应用于电动汽车 (EV),因为该混合系统结合了两种设备的优点。本文提出了一种电池/SC HESS 的自适应功率分配方案,以根据其存储的能量和负载电流最大化 SC 的利用率。在该方法中,采用自适应算法开发低通滤波器来计算合适的截止频率以在电池和 SC 之间分配功率需求。该方法可以调整截止频率但不改变控制系统的结构,因此不影响其原有的简单实现和稳定性特性。全面的仿真研究验证了所提出的电池/SC HESS 自适应功率分配方案的有效性,并使用 Lyapunov 方法进一步验证了其稳定性。结果表明,自适应方法比传统控制系统在运行期间电池能量吞吐量减少 20%–40% 的性能更好,并且可以根据 SC 的能量容量调整 HESS 的动态响应,进一步提高系统效率。经验证,提出的自适应功率分配方案能够延长电动汽车应用中 HESS 系统的使用寿命。
anaïsCassou *1,Quang Chuc Nguyen 2,Patrick Tounsi 1,Jean-Pierre Fradin 3,Marc Budinger 4,Ion Hazyuk 4 1 CNR,Laas,Laas,7 Avenue du du Colonel Roche Roche,Univ。De Toulouse, INSA, LAAS, F-31400 Toulouse, France 2 IRT Saint-Exupéry, 3 Rue Tarfaya - CS34436, 31400 Toulouse cedex 4, France 3 ICAM, site de Toulouse, 75 avenue de Grande Bretagne, 31076 Toulouse Cedex 3, France 4 Université de Toulouse, ICA (INSA, UPS,地雷Albi,Isae),135 Av。de rangueil,31077法国图卢兹 *电子邮件:anais.cassou@laas.fr本文在优化电源转换系统时涉及紧凑型瞬态热模型的兴趣。这些模型必须考虑基于SIC MOSFET的功率模块的不同芯片之间的热耦合效应。在模拟工具(例如ModelICA)中很容易实现开发的模型。我们将表明,对于在低占空比工作周期或快速变化的功率需求的应用程序,瞬态模型可以通过减轻系统来改善全球最佳设计。这种方法还确保连接温度不超过其极限值。