摘要:便携式多媒体设备和通信系统的蓬勃发展,对节省面积和功耗的高速数字信号处理 (DSP) 系统的需求也随之增加。有限脉冲响应 (FIR) 滤波器是设计高效数字信号处理系统的重要组成部分。数字有限脉冲响应 (FIR) 滤波器的使用是 DSP 中的主要模块之一。数字乘法器和加法器是 FIR 滤波器中最关键的算术功能单元,也决定了整个系统的性能。因此,低功耗系统设计已成为主要的性能目标。本文提出了一种使用超前进位加法器和乘法器设计的 FIR 滤波器。其中乘法器由改进型超前进位加法器的内部电路提出。超前进位加法器 (CLA) 用于加法运算,它使用最快的进位生成技术,通过减少修复进位位所需的时间来提高速度,而乘法器则以分层方式执行乘法过程。因此,所提出的方法可以最大限度地降低 FIR 滤波器的有效功率和延迟。初步结果表明,与传统方法相比,使用所提出的乘法器方法的 FIR 滤波器实现了更少的延迟和功率降低。所提出的 FIR 滤波器使用 Verilog 代码进行编程,并使用 Xilinx ISE 14.7 工具进行综合和实现。并使用 Xpower 分析器分析功率。关键词:进位前瞻加法器、FIR 滤波器、乘法器、数字信号处理
摘要生命周期评估(LCA)方法在识别和扩大可持续二氧化碳去除(CDR)干预措施的背景下,越来越多地用于政策决策。本文通过与可持续的CDR规模的政策决策相关的三个关键镜头进行了批判性审查CDR LCA案例研究,即CDR评估之间的可比性,评估CDR干预的气候优缺点以及对CDR CDR的更广泛的CDR CO-BENEFITS的考虑和影响。我们的结果表明,在提供宝贵的生命周期理解的同时,当前的实践利用了各种方法,通常是cdr和特定时间的。因此,它们不允许在CDR之间进行全面的交叉比较,也不揭示将来扩大CDR的潜在后果。我们建议CDR LCA设计需要更清晰的研究范围和目标定义,使用更一致的功能单元,更大的系统边界的全面性以及规定基线定义。这将允许进行强大的评估,促进与其他CDR方法的比较,并更好地证明净气候益处。库存应收集有关完整CDR生命周期和基线的时间依赖性数据,并报告背景假设。影响评估阶段应证明由CDR扩展可能引起的气候优点,共同利益和权衡。最后,为了确保CDR的可持续规模,应进行相应的分析,解释涉及所有选定的指标的比较以及碳存储的持久性与基线场景。
抽象的人脑图集的发展主要是面向研究的,并且在临床实践中使用地图集是有限的。在这里,我介绍了一个参考人脑图集的新定义,该定义可为教育,研究和临床应用提供服务,并由其用户扩展。随后,提出了多功能,用户扩展参考人脑图集的架构,并讨论了其实现。人类大脑图集被定义为具有高度有条理的内容,促进其广泛应用的工具,大量和异构知识数据库的工具,以及对用户增长的内容和知识的手段。所提出的体系结构决定了地图集的主要组成部分,它们的相互关系和功能角色。它包含四个功能单元,核心大脑模型,知识数据库,研究和临床数据输入和转换,以及工具包(支持处理,内容扩展,地图集个性化,导航,探索和显示),所有这些都由用户界面结合在一起。每个单元的功能,组件模块和子模块,数据处理和实现方面都描述。这种新颖的体系结构支持大脑知识收集,演示,使用,共享和分配,并且在学生和教育者的神经教育中广泛适用且有用,用于知识介绍和沟通,知识获取,聚合和发现的研究,以及用于预防,诊断,治疗,治疗,监测,监测,和预测,以及在决策方面进行临床应用。它建立了一个骨干,用于设计和开发新的,多功能和用户延伸的大脑图集平台,是实验室,医院和医学院的潜在标准。
摘要 - 零知识证明(ZKP)是一种加密工具,使一个方(一个供奉献者)向另一方(供奉献者)证明(一个verifier)是一个陈述是正确的,而无需供供者向Veriifier披露任何数据。ZKP具有许多用例,例如让客户委员会将计算委托给具有加密性正确性的服务器,同时使服务器能够在这些计算中使用秘密数据。ZKP应用程序涵盖了可验证的机器学习(ML)和数据库,在线拍卖,电子投票和区块链。虽然ZKP已被广泛用于区块链,但证明生成的过高成本将它们限制在证明非常简单的计算中。我们提出了一个新颖的加速器NOCAP,该加速器杠杆级的硬件 - 叠加器共同设计以实现变革性的加速。NOCAP生成的证明比32核CPU快586倍,而41倍的速度比PipeZk快41倍,这是最先进的ZKP加速器。我们利用最近的算法开发来实现这些加速:我们识别并结合了两种最近的基于哈希的ZKP算法Orion和Spartan,它们在CPU上具有与先前加速器针对的ZKP相似的性能,但对硬件加速性的态度更为舒张。尽管这些算法产生了更大的证据,但我们表明,末端加速器(包括供奉献时间,证明传输和验证时间)不仅仅证明这种尺寸的增加是合理的。我们为利用这些加速机会的新型硬件组织做出了贡献:NOCAP是一个可编程矢量处理器,其功能单元适合基于哈希的ZKP的需求。结果,NOCAP实现了为ZKP提供新用例的加速。我们还贡献了针对加速器量身定制的Spartan+Orion ZKP的共同设计的实现,并具有优化,可改善并行性并减少存储器的运行。索引术语 - 零知识证明,硬件加速度,可验证的计算
第2章管理控制过程和组织检查计划要求2-1。简介。a。管理控制过程(MCP)的目的是加强陆军指挥官和经理的问责制,以建立和维持有效的管理控制,并为他们评估这些控制措施的灵活性。所有指挥官和经理都有固有的责任,以建立和维持有效的控制,评估风险领域,确定和纠正这些控制措施的弱点,并保持上司的通知。在这方面,《完整性法》和OMB通函A-123将此固有的责任编纂为编纂。陆军法规11-2,管理控制和MEDCOM MCP手册,目前在网站http://www.cs.amedd.army.mil.mil/ameddir/tabd.doc中找到,提供了有关MCP的详细信息。b。组织检查计划(OIP)的目的是管理命令中的所有检查。这是一项全面的书面计划,旨在解决外部机构计划的所有检查和审核。OIP的目的是将检查和审核分为一个集中在命令目标上的单一凝聚力计划。根据命令的水平,OIP将包括命令检查,员工检查,员工协助访问和外部检查。有效的OIP允许指挥官使用这些检查来识别,纠正和防止命令中问题的再发生。陆军法规第1-2-2段,第3-2段,提供了有关组织检查计划的详细信息。指挥官在确定或评估准备就绪时还应使用OIP来补充和加强其他评估信息。c。指挥官应同时安排MCP和OIP检查,以限制任务成就的注意力。本章适用于OIP和MCP检查。Lotus Notes中发布到VETCOM库数据库的报告模板满足了这两个要求。2-2。检查。a。 HQ Vetcom将检查每个区域兽医命令(RVC);国防部军事工作犬兽医服务(DODMWDVS);以及使用Lotus Notes中的Vetcom库数据库中发布的适用清单,每2年使用食品和诊断实验室(FADL)。此检查的结果将保留在Vetcom HQ;副本将提供给功能单元经理。
目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
储能对于电网和运输部门的快速脱碳至关重要。[1,2]电池在满足网格上需要短期电力存储的需求并启用电动汽车(EVS)来储存和使用点播能量。[3]然而,通常将制造业的关键物质使用和上游环境影响被视为广泛使用充值电池的缺点。[4,5]生命周期评估(LCA)是一种广泛使用的方法,用于检查大型电池生产,使用和处置和/或回收利用的潜在影响。在其核心上,LCA是量化与产品或服务的直接和间接环境负担相关的方法。[6]这也是一个有用的框架,可以探索提供可比服务的不同技术之间的环境权衡。但是,将LCA应用于电池的原因是从方法论选择到电池制造的主要数据稀缺的各种原因。迄今为止,LCA领域尚未达成共识,即应如何消除电池的环境影响,也没有如何报告结果。研究使用多种系统界限,功能单元,主要数据源(进而在不同级别的谷物级别报告数据)以及生命周期库存,中点和影响类别。这使得不同技术的跨季前者会限制LCA为早期科学研究和技术开发提供反馈循环的能力。Ellingsen等。它也可以限制我们检测和纠正文献中错误的能力;生命周期库存结果通常会因文献中一个或多个数量级而变化,而且大多数评论无法解释差异的根本原因。关于锂离子电池LCA(LIB)LCA的先前审查论文可以归类为三个主要组:识别和降低来源或不确定性/可变性; [7-9]综合结果并确定关键驱动因素以告知进一步的研究; [10,11]以及对改善LCA实践的文献的批判性审查。[12] Sullivan and Gaines [9]回顾了铅酸,镍含量,镍金属氢化物,镍氢,钠硫磺和锂离子电池的生命周期库存估计,并计算了自己的估计值以进行比较;结论的重点是填补关键数据空白的需求。[7]
匹兹堡大学物理与天文学系,宾夕法尼亚州匹兹堡 15260 * 通讯作者,电子邮件:pth9@pitt.edu 摘要 量子信息科学是一个快速发展的跨学科领域,吸引了学术界和行业专家的广泛关注。它需要来自各种传统领域的人才,包括物理学、工程学、化学和计算机科学等。为了让学生为这样的机会做好准备,重要的是让他们打下坚实的量子信息科学基础,量子计算在其中起着核心作用。在本研究中,我们讨论了布洛赫球面教程的开发、验证和评估,布洛赫球面是一种有用的可视化工具,可用于培养对单个量子比特(量子位)的直觉,而单个量子比特是任何量子计算机的基本组成部分。在学生接受有关必修主题的传统讲座式指导后,以及在参与教程后,我们对他们的理解进行了评估。我们观察、分析并讨论他们在教程中涵盖的概念上的表现进步。简介 量子信息科学与工程 (QISE) 是一个令人兴奋的跨学科领域,可在量子计算、量子通信和网络以及量子传感中应用,这些应用因多种原因而吸引着科学家和工程师。计算机科学家和工程师正在开发用于解决各种问题的量子算法,包括传统计算机无法大规模解决的问题。例如,在传统计算机上,对大素数乘积进行因式分解的问题会随着素数的大小呈指数增长,但在使用 Shor 算法的量子计算机上,该问题的大小大致为多项式。对于未来科学应用,物理学家和化学家也对量子计算机解决其学科中重要问题的潜力感到兴奋,其中求解薛定谔方程起着重要作用。开发强大的量子比特 (qubit) 和可扩展的量子计算机需要物理学家和工程师的专业知识。由于所有这些原因以及其他原因,这一研究领域对于许多来自科学和工程学科、对 QISE 相关领域感兴趣的学生来说,具有巨大的发展前景 [1,2]。用于介绍量子态及其可视化的教学工具之一是 Bloch 球,它允许可视化量子比特(量子计算机的基本功能单元)的状态。它可以成为理解双态系统特性的重要而有力的辅助手段,但学生往往难以理解。此外,Bloch 球是当前研究(包括量子传感和断层扫描)中非常有用的工具,该领域的实验者经常使用它来表征工作中的单个量子比特。布洛赫球面可以让人们以图形方式了解单量子比特状态,包括通过密度矩阵的混合状态,以及可以通过单量子比特门完成的操作。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
计算机系统的框图是一个视觉表示,可展示其主要组件以及它们如何相互作用。此解释将深入到计算机的框图中,并探索其各个部分。计算机的主要元素包括CPU(中央处理单元),内存,输入设备,输出设备,所有这些都对其操作至关重要。框图提供了系统的简化视觉概述,突出显示了关键组件及其互连。计算机的基本框图将说明这些主要部分以及它们如何共同发挥作用。让我们在计算机框图的上下文中检查每个重要组件。从CPU或中央处理单元开始,它本质上是计算机的大脑,负责处理数据,执行程序和管理硬件组件。CPU的主要角色是运行程序,同时还控制输入/输出设备和内存。在较小的计算机中,微处理器芯片用作CPU。CPU的关键子组件包括控制单元(CU),算术和逻辑单元(ALU)和累加器寄存器。控制单元充当各种计算机操作的协调员,促进输入单元,输出单元,ALU和主内存之间的通信。它负责控制计算机内的所有活动,从内存中接收说明,将其转换为计算机不同部分的信号,并生成必要的时机和控制信号以执行这些说明。这些功能是:1。2。算术和逻辑单元(ALU)执行基本的算术操作,例如加法,减法,乘法和数据,以及逻辑操作,例如和或,或,或,或,或,不及排他性。它处理数据和指令,并可以执行其他功能,例如合并,分类和选择数据。从内存中接收数据后,Alu进行操作,然后将结果发送回存储器或输出单元。寄存器用于在处理过程中存储临时结果和数据。通过快速访问正在处理的数据,他们在计算机的有效操作中起着至关重要的作用。CPU及其子组件(例如控制单元,ALU和寄存器)与其他组件(例如内存,输入设备和输出设备)和谐相处,以确保计算机系统的平滑功能。了解这些元素及其相互作用是掌握计算机运行方式的基础。计算机中内存的主要目的是存储信息,具有两种主要类型:主内存/主内存和次要内存/辅助内存。前者是挥发性的,关闭时会丢失存储的信息,而后者保留了永久数据。其他记忆(例如缓存内存和虚拟内存)增强了性能。输入设备通过将原始数据转换为二进制形式,使用户能够将原始数据输入到计算机中。它们是用户和计算机之间的中介者,采用各种形式的数据,例如文本,图像,音频或视频。相比之下,输出设备以各种格式显示了来自计算机的处理数据。关键功能包括处理用户数据,将其转换为机器可读的二进制代码(0s和1s),将转换的数据传输到主内存中,并且通常使用标准输入设备(例如键盘)。输入设备的示例包括键盘,鼠标,扫描仪,麦克风/相机,操纵杆,轻笔和轨迹球。他们将处理的数据转换为可读形式(通常是十进制或字母数字),显示,打印,播放或投射给用户。输出设备的示例是监视器,打印机,扬声器和投影仪。此表示形式是计算机组件的一般概述,该概述可能会根据台式机,笔记本电脑,服务器等及其设计(例如台式机,笔记本电脑,服务器等)等计算机的类型而有所不同。数字计算机处理数字数据,该数据以二进制形式呈现。这与使用连续数据的模拟计算机不同。CPU或中央处理单元是进行所有计算和操作的数字计算机的主要组件。它从各种来源获取输入数据,根据程序说明对其进行处理,并产生数字输出。CPU具有两个主要功能:执行算术和逻辑操作,例如加法,减法,乘法和划分,以及执行逻辑操作,例如和或,或,或,不和排除。这些操作对于分析和评估数据至关重要,该数据通常与存储在程序或内存中的一组已知值相匹配。计算机中的内存是数据和程序的存储库,类似于笔记本以供将来参考。3。可以将其分类为两种主要类型:主要内存,用于在执行过程中暂时存储数据和程序,以及用于存储不需要直接CPU访问的操作系统,编译器和应用程序的辅助内存。输入单元接受来自外部来源的指令和数据,将它们转换为可读的计算机可读格式,并将其提供给系统以进行处理。输出单元接受计算机产生的结果,将其转换为人类可读格式,并将其提供给外界。计算机组件和操作计算机的功能基于四个主要组件:数据,图片,声音和图形。这些元素使计算机能够迅速,准确地解决复杂问题。如图所示,计算机系统执行五个基本功能,无论其尺寸或配置如何。数据输入:这涉及将信息和程序输入计算机系统。数据存储:此过程永久保存数据和指令。数据处理:中央处理单元(CPU)根据给定指令根据数据执行算术和逻辑操作。4。输出生成:计算机由处理的数据产生结果,然后将其存储以进行进一步处理。5。控制操作:控制单元执行指令并监督所有操作的分步性能。输入操作:输入过程涉及将原始数据馈送到计算机系统中。该数据是组织和处理以产生输出的。存储操作:数据存储在系统中永久保存信息。在处理开始之前,由于CPU的快速处理速度,必须将数据馈入系统。主存储单元在CPU处理它们时暂时存储数据和指令。计算机在其功能单元之间分配任务,以执行上一节中概述的操作。该系统包括三个主要组件:算术逻辑单元(ALU),逻辑单元,控制单元(CU)和中央处理单元(CPU)。
