研究了四名粘性胃癌较差的患者。 分析的类型包括肠道(C1),标志环单元(C2和C4)和未指定的(C3)。 患者C4表现出胃胃肠道的十二指肠浸润。 尽管进行了几次诊断测试和治疗,但不可能确定肿瘤向十二指肠扩展或改善患者的进展。 肿瘤的测序鉴定出CREBBP中的突变,其变体呈现了精氨酸替代半胱氨酸,TP53癌基因中的突变并未改变氨基酸苏氨酸的位置(Thr125 =)。 C1,C2和C3病例在健康和肿瘤胃中进行蛋白质组学分析。 蛋白质与CREBBP和TP53基因相关的蛋白质,与精氨酸和半胱氨酸,组蛋白HAT和HDAC相关的其他蛋白质,以及泛素 - 蛋白酶体系统的蛋白质。 使用XLSTAT程序,观察到SDCBP,NCBP1,MGMT,RARS,HDAC1,UBE1和UBE2K蛋白的表达显着差异,突出了它们作为这种类型胃癌的生物标志物的潜力。 在实验研究中,Inobrodib在调节p300/cbp和使用MC-tRNA纠正突变引起的氨基酸误差方面显示出疗效。 另外,已经提出了靶向蛋白质降解研究了四名粘性胃癌较差的患者。分析的类型包括肠道(C1),标志环单元(C2和C4)和未指定的(C3)。患者C4表现出胃胃肠道的十二指肠浸润。尽管进行了几次诊断测试和治疗,但不可能确定肿瘤向十二指肠扩展或改善患者的进展。肿瘤的测序鉴定出CREBBP中的突变,其变体呈现了精氨酸替代半胱氨酸,TP53癌基因中的突变并未改变氨基酸苏氨酸的位置(Thr125 =)。C1,C2和C3病例在健康和肿瘤胃中进行蛋白质组学分析。蛋白质与CREBBP和TP53基因相关的蛋白质,与精氨酸和半胱氨酸,组蛋白HAT和HDAC相关的其他蛋白质,以及泛素 - 蛋白酶体系统的蛋白质。使用XLSTAT程序,观察到SDCBP,NCBP1,MGMT,RARS,HDAC1,UBE1和UBE2K蛋白的表达显着差异,突出了它们作为这种类型胃癌的生物标志物的潜力。在实验研究中,Inobrodib在调节p300/cbp和使用MC-tRNA纠正突变引起的氨基酸误差方面显示出疗效。另外,已经提出了靶向蛋白质降解
MTHFR 酶活性缺乏通常是遗传突变的结果,是导致高同型半胱氨酸血症的主要原因 (6)。在有流产史的患者中,MTHFR 多态性具有显著影响。高同型半胱氨酸血症导致高凝状态,是早期流产的主要原因。MTHFR 亚型会影响精子质量和数量以及卵巢储备减少 (7)。肝细胞产生一种名为 PC 的糖蛋白,需要维生素 K 才能正常运作。弥漫性血管内凝血和大量血栓形成是 PC 缺乏的两种主要表现 (8)。PC 缺乏患者的血栓风险增加了七倍。而就维生素 K 依赖性糖蛋白 PS 而言,血栓形成的风险比正常人高 8.5 倍 (9)。患有 PS 缺乏症的女性在怀孕或产褥期更容易患上 VTE,她们患 RM 的风险是普通人群的三倍 (10)。维生素 K 独立的糖蛋白 AT 在凝血级联中必不可少 (11)。大约 60% 的 AT 缺乏症病例是自发发生的,这种疾病以常染色体显性方式遗传,使携带者更容易患上血栓症和 VTE。如果女性有 VTE 病史,由于 AT 缺乏,她在怀孕期间患血栓的风险将从 31% 上升到 50% (12)。本研究旨在评估埃及人群中 PT 和 MTHFR 基因多态性与 RM 的关联。此外,我们还研究了上埃及 RM 患者中血栓形成标志物的流行情况,包括同型半胱氨酸、PC、PS 和 ATIII。
心血管疾病(CVD)是全球发病率和死亡率的主要原因之一,继续寻找新型治疗剂对于应对这一全球健康挑战至关重要。在过去十年中,硫化氢(H₂S)在医学研究领域引起了极大的关注,因为它已被证明是心脏保护气体信号分子。它以内源产生的燃气递质加入一氧化氮和一氧化碳。至于其机制,H₂S通过在称为硫化的过程中对靶蛋白上的半胱氨酸残基的翻译后添加到半胱氨酸残基来发挥作用。因此,观察到的H₂S的生理作用包括血管舒张,抗凋亡,抗炎,抗氧化作用以及离子通道的调节。各种研究都观察到H₂S在心肌梗塞,缺血 - 重新灌注损伤,心脏重塑,心力衰竭,心律失常和动脉粥样硬化等疾病中的心脏保护益处。在这篇综述中,我们讨论了各种CVD中H₂的机制和治疗潜力。
摘要:β -catenin(CTNNB1)是一种致癌转录因子,在细胞 - 细胞粘附和细胞增殖和存活基因的转录中很重要,可驱动许多不同类型的癌症的发病机理。但是,CTNNB1的直接药理靶向仍然具有挑战性。在这里,我们进行了一个带有半胱氨酸反应性共价配体库的屏幕,以识别以泛素蛋白依赖性依赖性依赖性方式耗尽CTNNB1的单价降解器EN83。我们表明,EN83直接靶向CTNNB1三个半胱氨酸C466,C520和C619,导致CTNNB1的稳定和降解。通过结构优化,我们生成了一个高度有效且相对选择性的不稳定降解器,该降解器通过仅在CTNNB1上的C619靶向起作用。我们的结果表明,化学蛋白质组学方法可用于共价靶向和降解具有不稳定介导的降解(例如CTNNB1)(例如CTNNB1)的具有挑战性的转录因子。■简介
蛋白质 - 肽和蛋白质 - 蛋白结合物的合成可能很棘手,这是由于带来化学选择性和现场挑战的蛋白质中的多样化化学功能。2生物正交化学的使用已成功克服了其中的一些挑战,但通常需要冗长的合成才能掺入不自然的氨基酸。同时,使用天然蛋白质功能的使用通常仅限于N-或C-termini,或者导致非选择性标记亲核残基(例如半胱氨酸或赖氨酸)。由于这些原因,人们非常有兴趣扩展允许仔细阐述蛋白质体系结构的方法的工具箱。在他们在ACS Central Science发表的最新作品中,由Francis,Doudna和Fellman领导的团队描述了一种耦合两种生物分子的方法,分别含有酪氨酸和半胱氨酸残留物。酶酪氨酸酶用于将暴露于溶剂的酪氨酸残基氧化为正质酮弹性基团。该组随后与硫醇轴承成分反应,从而导致两种底物之间形成新的共价键(图1)。这建立在团队以前在利用原位形成的奎因酮功能的经验上
a Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal *Email: gb453@cam.ac.uk Dek: A tyrosine-targeting bioconjugation reaction导致CAS9蛋白质肽结合物显示出细胞递送增加20倍。https://pubs.acs.org/doi/10.1021/acscentsci。0 C00940链接到“靶向酪氨酸靶向生物偶联反应”的链接残基半胱氨酸和赖氨酸是生物偶联化学的无可争议的拥护者。靶向其他氨基酸已被吹捧为改善蛋白质肽和蛋白质 - 蛋白质缀合物的合成的潜在方法,这些方法经过广泛研究,以其潜在的治疗能力,并用作理解生物学功能的工具。现在,加利福尼亚大学伯克利分校的一组研究人员针对溶剂曝光的酪氨酸残留物,以开发一种准备这种共轭物的方法。1,由于蛋白质的化学毒素不同,蛋白质肽和蛋白质 - 蛋白质结合物的合成可能很棘手,从而提出化学选择性和现场特异性挑战。2生物正交化学的使用已成功克服了其中的一些挑战,但通常需要冗长的合成才能掺入不自然的氨基酸。同时,使用天然蛋白质功能通常仅限于N-或C末端,或导致无选择的标记亲核残基(例如半胱氨酸或赖氨酸)。酶酪氨酸酶用于将溶剂暴露的酪氨酸残基氧化为Quinone官能团。由于这些原因,人们非常有兴趣扩展允许仔细阐述蛋白质体系结构的方法的工具箱。在他们在ACS Central Science发表的最新作品中,由Francis,Doudna和Fellman领导的团队描述了一种耦合两种生物分子的方法,分别含有酪氨酸和半胱氨酸残留物。随后,该组与硫化成分反应,从而导致两种底物之间形成新的共价键(图1)。这是基于团队以前在利用原位形成的奎因酮功能的经验,目的是与存在于脯氨酸残基和苯胺等生物分子上的其他亲核试剂的反应。3,4虽然大多数蛋白质通常贡献半胱氨酸或赖氨酸残基作为生物偶联反应的亲核成分,但形成了亲电矫正剂量子酮的形成,代表了一种有趣的Umpolung方法,具有潜力,可以扩展蛋白质生物偶联化学空间。
解码蛋白质过硫化信号生命最初在富含硫化氢 (H2S) 的环境中出现和繁荣,过去十年发表的文献开始认识到 H2S 是许多生理和病理过程的介质。接触 H2S 会使动物进入类似假死的状态,而饮食限制导致的寿命延长则是 H2S 积累的结果。其产生障碍与神经退行性疾病和癌症等许多疾病的发展有关。一种称为蛋白质过硫化的半胱氨酸残基的新型翻译后修饰 (PTM)(即将半胱氨酸残基 PSH 转化为过硫化物,PSSH)被认为是所有这些效应背后的统一机制。因此,了解蛋白质过硫化不仅具有基础潜力,例如揭示新的信号通路,而且具有对抗衰老和疾病的药理学潜力。然而,H2S 介导的 PSSH 形成的潜在机制仍不清楚,主要是因为缺乏可靠且有选择性的 PSSH 标记方法。在这里,使用我们团队开发的尖端 PSSH 标记方法,结合蛋白质组学、代谢组学和分子生物学,并通过研究不同的模型系统(细胞、秀丽隐杆线虫、啮齿动物),我们打算 (i) 获得有关 PSSH 动力学的高分辨率结构、功能、定量和时空信息,并将这种进化定位为
摘要:人类接触DNA烷基化剂的特征很差,部分原因是仅量化了有限的特定烷基DNA加合物范围。人类DNA修复蛋白,O 6-甲基鸟氨酸O 6-甲基转移酶(MGMT),不可逆地将烷基从DNA O 6-烷基鸟氨酸(O 6-烷基)转移到受体半胱氨酸上,从(ASP)。重组MGMT与含有不同O 6-烷基,替莫唑胺 - 甲基化小牛胸腺DNA(ME -CT -DNA)或已知O 6-甲基G(O 6- meg)水平的人类结肠直肠DNA或人结直肠DNA的寡脱氧核苷酸(ODN)孵育。用胰蛋白酶消化,并通过基质辅助激光解吸/飞行飞行时间质谱检测和定量ASP。ASP含有S-甲基,S-乙基,S-丙基,S-羟基乙基,S-羧甲基,S-苯甲酰苯基和S-吡啶糖丁基半胱氨酸基团,通过将MGMT与含有相应的O 6-烷基的OD孵育来检测到MGMT。在MGMT与ME-CT-DNA孵育后检测到的含有S-甲基半胱氨酸的ASP的LOQ <0.05 pmol O 6 -meg每mg CT-DNA。将MGMT与人类结直肠DNA孵育,该ASP产生的ASP含有S-甲基半胱氨酸的水平,与先前由HPLC -RadioMumunoAseay确定的O 6 -MEG相关的水平(r 2 = 0.74; P = 0.014)。o 6 -CMG,一种推定的O 6-羟基乙基加合物和其他潜在的未鉴定MGMT底物。4最近在结直肠癌中描述了类似的突变签名,这意味着AA暴露为这种新颖的方法是对人DNA中O 6 -ALKG的鉴定和定量的方法,揭示了人类DNA烷基加合物的存在,尚待充分表征。该方法建立了一个表征人DNA O 6 -Alkg加合体的平台,并且鉴于O 6 -Alkgs的诱变潜力可以提供有关癌症发病机理的机械信息。■简介烷基化剂(AAS)是已知的人类诱变剂和致癌物,其作用在很大程度上是由DNA中烷基加合物形成的介导的。1 - 3在用化学治疗甲基化剂Temozolomide治疗后,在恶性黑色素瘤和胶质母细胞瘤多种形式的患者中观察到的突变景观,替莫唑胺,主要由DNA中O 6-甲基鸟嘌呤(O 6-meg)产生的G -A转变。
在全球范围内,微塑性污染对海洋生物群具有许多负面影响,这加剧了其他形式的全球人为障碍的影响。越来越多的证据表明,微塑料(MPS)不仅通过摄入造成物理损害,而且还通过浸出吸收和吸附化学物质来充当危险化合物的媒介。对塑料污染作用的研究在很大程度上假定物种均匀反应,同时忽略了种内多样性(即单个物种内的变化)。我们研究了源自工厂新鲜(处女)和滩开的微塑料对地中海贻贝Mytilus Galloprovincialis的两个遗传谱系的行为反应的塑料浸出物的影响。通过实验室行为实验,我们发现,在暴露于海滩微塑料(海滩MPL)的渗出液中,大西洋标本的移动率明显少于地中海个体,就(i)(i)通过移动和(ii)净距离响应的个体比例(i)净距离和距离。相比之下,在暴露于Virgin Micropolpics(Virgin MPLS)的MPL时,在成年人或新兵的行为中未观察到显着的种内差异。此外,在浓度增加(木炭过滤海水中的10-5 m至10-3 m)以增加浓度的三个氨基酸(L-半胱氨酸,脯氨酸和L-达糖碱)的提示接收,通过使用Mussel触及海滩MPLS或对照海水进行的电生理学分析测试了在木炭过滤的海水中接受提示。我们发现,对10-3 m L-半胱氨酸的反应(无论处理如何)和10-4 m L-半胱氨酸(在暴露于海滩MPLS的贻贝中)和10-3 M脯氨酸(在暴露于海滩MPLS的贻贝中)和10-5 m l- L-L- lel- L-L-丁嘧啶的反应明显差异。我们的研究表明,海贻贝的种内变异可能会引起对塑料污染的不同反应,这可能是由于谱系之间的局部适应和生理变异而引发的。我们的工作强调了评估种内变异的影响的重要性,尤其是在环境前哨物种中,因为这种多样性水平可以调节对塑料污染的反应。