突变并可以检查巨核细胞分化和其他疾病表型的渐进性扰动。在本期的 JCI 中,Arkoun 和同事使用分步技术将 GATA1 、 MPL 和 SMC3 突变体引入患有或不患有 DS 的人的诱导多能干细胞 (iPSC) 中实现了这一目标 (9)。研究人员揭示了每种变体的个体贡献以及它们如何与 T21 协同导致 DS-AMKL。作者使用 CRISPR/Cas9 技术进行分步基因编辑,生成了 20 个不同的二体和三体 iPSC 克隆,这些克隆包含 GATA1、MPL W515K 和 SMC3 杂合缺失 (SMC3 +/–) 的组合,并通过功能分析验证了这些变化。 MPL 是血小板生成素的跨膜受体,是巨核细胞成熟为血小板所必需的。胞内结构域通过与 JAK2 相互作用介导信号传导。MPL 515 位点的多个功能获得性氨基酸置换通过血小板生成素依赖性激活 JAK/STAT 通路导致骨髓增生性疾病 (10)。有趣的是,W515K/L 突变也见于 T21 患者的 AMKL 和获得额外 21 号染色体的整倍体个体 (D21) 的白血病中,这可能导致巨核细胞分化改变 (7, 11)。T21 和 Gata1 背景下的 MPL 突变足以诱发小鼠巨核细胞白血病 (12)。此外,作者假设,黏连蛋白基因 SMC3 的单倍体不足通过杂合失活会改变 GATA1 结合的染色质可及性,从而改变巨核细胞分化的转录控制。鉴于这些突变单独导致髓系谱系破坏,逐步 iPSC 模型
背景:Seisonidea(也是Seisonacea或Seisonidae)是一群生活在海洋甲壳动物(Nebalia Spec。)到目前为止仅描述了四个物种。它的单系起源是主要是自由活动的轮动物(单核,bdelloidea)和内寄生虫棘手的蠕虫(acanthocephala)。然而,rotifera-acanthocephala进化枝(rotifera sensu lato或syndermata)内部的系统发育关系受到持续的争论,这是我们对基因组和生活方式如何发展的理解的后果。为了获得新的见解,我们分析了基因组和主要分类单元Seisonidea的转录组的初稿。结果:对GDNA-SEQ和mRNA-SEQ数据的分析发现了法国通道海岸附近的塞森·尼巴里亚·格鲁伯(Seison Nebaliae Grube)的两个遗传学谱系。尽管基因顺序相同,但他们的线粒体单倍型仅具有82%的序列身份。在核基因组中,不同基因紧凑性,GC含量和密码子的用法反映了不同的弦。单倍体核基因组跨越大约。46 MB,其中96%被重建。根据约23,000个超级转录,S。nebaliae中的基因编号应在rotifera-acanthocephala的其他成员发布的范围内。与此相一致,在nebaliae基因组组装中的后唑核直系同源物和ANTP型转录调节基因在所分析的其他组件中相应数量之间。我们还提供了证据表明,旋转 - acanthocephala中seisonidea的基础分支可以反映出对外组的吸引力。因此,通过重建的祖先序列生根,导致了Hemirotifera(bdelloidea+Pararotatoria)内的单系寄生虫(Seisonidea+acanthocephala)。
潮间带腹足动物Littorina saxatilis是研究物种形成和局部适应的模型系统。反复出现的不同生态型表现出不同水平的遗传差异使得萨克萨蒂利乳杆菌特别适合研究相同谱系中形成连续性的不同阶段。一个主要发现是存在与生态型差异相关的几种大染色体反转,并且该物种提供了一种系统来研究反演在这种差异中的作用的系统。萨克萨蒂利乳杆菌的基因组为1.35 GB,由17个染色体组成。该物种的第一个参考基因组是使用Illumina数据组装的,高度碎片(N50的44 kb),非常不完整,Metazoan数据集的BUSCO完整性为80.1%。一个全同胞家族的连锁图将587 MBP的基因组的放置放在17个连锁基团中,与单倍体数量相对应,但该参考基因组的分散性质限制了对divergent选择和在生态型形成过程中的相互作用的理解。在这里,我们提出了一个新生成的参考基因组,该基因组高度连续,n50为67 Mb,占总组装长度的90.4%,占17个超级折叠术。它也高度完成了BUSCO的完整性,占后生数据集的94.1%。此新参考将允许研究与生态型形成有关的基因组区域,并更好地表征反转及其在物种物种中的作用。
所有生物都需要免疫系统来识别、区分和防御病原体。从进化的角度来看,免疫系统是在快速进化的病原体施加的强大选择压力下进化的。然而,免疫系统的功能多样性意味着不同的免疫成分及其相关基因可能在不同形式的选择下进化。昆虫传粉者提供基本的生态系统服务,是一个重要的系统,可以借此了解选择如何影响免疫基因的进化,因为它们的数量正在减少,而病原体被强调为一个潜在的促成因素。为了加深我们对重要传粉者免疫基因中遗传变异的理解,我们对野生捕获的 Bombus terrestris 雄性进行了全基因组重测序。我们首先评估了典型免疫基因的核苷酸多样性和扩展单倍型纯合性,发现正向选择作用于参与病原体识别和抗病毒防御的基因的最强信号,这可能是由野生种群中病原体传播的增加所驱动的。我们还发现了在强烈净化选择下进化的免疫基因,突出了对大黄蜂免疫系统的潜在限制。最后,我们强调了野生单倍体雄性的免疫基因中可能存在的功能丧失等位基因,这表明这些基因对于发育和生存可能不那么重要,并且代表了大黄蜂免疫系统基因库中的冗余。总的来说,我们的分析为关键传粉者免疫系统的近期进化史提供了新的见解,突出了选择目标、适应限制和潜在的冗余。
摘要 从寡核苷酸定向诱变 (ODM) 到 CRISPR 系统,基因组编辑工具都使用合成寡核苷酸进行核苷酸的靶向交换。目前,大多数基因组编辑方案依赖于具有体细胞克隆变异和植物再生限制的体外细胞或组织培养系统。因此,我们在此报告了一种用于优化 ODM 的替代植物细胞测试系统,该系统基于将寡核苷酸溶液注射到单倍体玉米幼苗的顶端分生组织区域。使用 5′-荧光素标记的寡核苷酸,我们检测到合成 DNA 分子在茎尖分生组织细胞和叶原基维管束中的积累。为了沉默或敲低体细胞中的八氢番茄红素去饱和酶基因,将带有 TAG 终止密码子的 41 碱基长的单链寡核苷酸注射到玉米幼苗中。我们检测到长出的 M1 幼苗长出了带有白色条纹或浅绿色的叶子。白色条纹的共聚焦显微镜显示,除了叶绿素荧光缺乏的组织区域外,白色条纹中还存在含叶绿素的细胞。对白色条纹的 DNA 样本进行 Ion Torrent 测序表明,八氢番茄红素去饱和酶基因中的 TAG 终止密码子的读取频率为 0.13–1.50%。在将寡核苷酸分子注射到玉米幼苗的茎尖分生组织区域后,出现褪绿异常支持了寡核苷酸分子的诱变性质。所述方案为在幼苗早期阶段表征具有不同化学性质的诱变寡核苷酸的功能以及在植物水平上测试各种处理组合的效率提供了基础。
Neoformans是真菌性脑膜炎的最常见原因,是一种基础性菌群单倍体发芽的酵母,具有完整的性周期。通过生物学转化和长长的同源臂,通过同源重组进行基因组修饰是可行的,但是该方法是艰巨而不可靠的。最近,多个小组报道了使用CRISPR-CAS9作为生物学的替代方案,但仍然有必要使用长期的HOMOLOG ARM,从而限制了该方法的实用性。由于在先前研究中使用的链球菌CAS9衍生物在Neoformans中没有选择用于表达,因此我们设计,合成并测试了全梭状芽胞杆菌(C. neoformans)的全念珠菌(CNO)Cas9。我们发现,CAS9仅带有常见的Neoformans密码子和共有的C. Neoformans内含子以及TEF1启动子和终结器以及核定位信号(CNO Cas9或“ CNOCAS9”)可靠地可靠地在C. Neoformans菌株中可靠地编辑基因组。此外,使用带有短(50bp)同源臂的供体来完成编辑,这些捐赠者附着于标记DNA上,这些供体与合成的寡核苷酸和PCR扩增一起产生。我们还证明,先前的CNOCAS9稳定整合进一步增强了转移和同源重组效率。重要的是,这种操作不会影响动物的毒力。我们还建立了一个通用标记的模块,该模块具有密码子优化的荧光蛋白(Mneongreen)和一个串联的钙调蛋白结合肽-2X标志标签,允许对蛋白质进行本地化和纯化研究,以对相应的基因进行简短授权的重新构造对相应的基因进行修改。这些工具使Neoformans中的短体系基因组工程能够。
精确操纵和编辑人类细胞 DNA 序列的能力可以催生出强大的新型基因组药物。全球有数百万人患有遗传性疾病(Korf 等人,2019 年),其根本原因原则上可以通过治疗性 DNA 编辑剂来纠正。虽然传统的基因增强疗法可以通过提供基因的功能性副本来治疗某些常染色体隐性或单倍体不足性疾病,但基因编辑疗法可以直接纠正基因组 DNA 中的致病突变。因此,原则上,基因编辑可以治疗更广泛的遗传疾病,包括常染色体显性遗传病、因基因产物过少或过多而引起的疾病,或其他简单的基因过度表达无法最佳挽救疾病的疾病。即使对于可以通过现有基因增强或基因沉默策略解决的疾病,通过安装突变来增加或减少靶基因表达的基因编辑疗法也可以通过一次性治疗达到相同的效果,从而提供永久治愈的可能性。更广泛地说,即使没有致病突变的个体,患某些主要疾病(如冠心病)的风险也可以通过精确修改靶基因来调节,这使得基因编辑(如果被证明足够安全有效)有朝一日可能用于降低普通人群的疾病风险。治疗性基因编辑的前景促使人们做出巨大努力将基因编辑疗法引入临床。最近的进展包括开发用于哺乳动物细胞基因编辑的强大工具,包括可编程核酸酶、碱基编辑器和引发编辑器(Anzalone 等人,2020 年;Doudna,2020 年;Newby 和 Liu,2021 年)。这些基因编辑剂具有
基于 CRISPR 的归巢基因驱动可以设计为破坏必需基因,同时偏向其自身的遗传,从而在实验室中抑制蚊子种群。这类基因驱动依赖于 CRISPR-Cas9 对目标序列的切割和从同源染色体中复制(“归巢”)基因驱动元件。然而,预计对切割有抗性但仍保持必需基因功能的靶位突变将被强烈选择。针对不易容忍突变的功能受限区域应该会降低抗性的概率。序列水平的进化保守性通常是功能约束的可靠指标,尽管一个保守序列与另一个保守序列之间实际的潜在约束水平可能有很大差异。在这里,我们在疟疾媒介冈比亚按蚊中生成了一种新型成虫致死基因驱动 (ALGD),其靶向蚊子发育过程中所需的单倍体必需基因 (AGAP029113) 中超保守的靶位,该基因满足种群抑制基因驱动靶位的许多标准。然后,我们设计了一种选择方案,以实验性地评估在其靶位产生和随后选择基因驱动抗性突变的可能性。我们在笼养种群中模拟了基因驱动接近固定的情景,其中对抗性的选择预计最强。对目标基因座的连续采样显示选择了单个、恢复性的、符合框架的核苷酸替换。我们的研究结果表明,仅靠超保守并不能预测对靶位抗性具有抗性的位点。我们的体内抗性评估策略有助于验证候选基因驱动目标的抗性恢复力,并有助于改善对野外种群中基因驱动入侵动态的预测。
LBA002 Targeting GSPT1 by a novel cereblon E3 ligase modulator for the treatment of Acute Lymphoblastic Leukemia Fatemeh Keramatnia 1 , Yunchao Chang 1 , Gisele Nishiguchi 1 , Jaeki Min 1 , Charles Mullighan 1 , Marcus Fischer 1 , Zoran Rankovic 1 , Fatemeh Keramatnia 1 .1田纳西州孟菲斯的圣裘德儿童研究医院。急性淋巴细胞白血病(所有),最常见的儿童癌症和成人第二常见的急性白血病,是由骨髓中未分化的淋巴前体细胞的克隆扩张引起的。尽管大多数儿童期所有病例都具有转录因子(TF)基因突变或重排的克隆遗传改变,但TF改变仍然是困难的治疗靶标。小分子诱导的蛋白质降解是一种新型策略,可以应用于当前不受限制的靶标,例如TF和融合癌蛋白。在此范式中,小分子降解器(Protac或Mocular Glue(MG))重定向细胞的内源性泛素蛋白酶体系统,并诱导靶蛋白或非本地蛋白质的泛素化或非本地底物E3依基酶(Neosubstrate)(Neosubstrate)(Neosubstrate)及其下层蛋白酶质量下生成。最近,据报道,CRBN E3连接酶调节剂CC90009在急性髓细胞性白血病中表现出有效的抗肿瘤活性,从而导致GSPT1(G1至S相变因子)为CRBN Neosubstrate。这些发现表明,MGS针对不同恶性肿瘤中意外漏洞的潜力。我们在一组代表性急性白血病细胞系中对MGL进行筛选,包括CRLF2-重新排列的所有细胞系MHH-CALL-4鉴定了几个活性MG,具有EC50 <5μm。在这里,使用确认的CRBN结合亲和力,使用结构上多样化和独特的MGS(Molecular Glue库(MGL)),我们试图通过表型和蛋白质组学方法鉴定新的CRBN调节剂。Lenalidomide竞争分析和MHH-CALL-4 CRBN击倒细胞证实了这些MGS的CRBN依赖性。在这些化合物中,SJ6986,沙利度胺驱动的磺酰胺在10多个在体外测试的所有细胞系中显示出有效的细胞毒性。TMT-MS蛋白质组学分析将GSPT1/2鉴定为具有高选择性的该化合物的主要靶标。我们接下来在一组衍生的异种移植物(PDX)中测试了SJ6986的活性,该患者具有IGH-CRLF2,EPOR,ATF7IP-JAK2 EX VIVO的重排。所有测试的肿瘤对IC50在纳摩尔范围内的SJ6986高度敏感。NSG小鼠中的PK分析表明SJ6986的迅速吸收和超过80%的口服生物利用度。PD研究在IGH-CRLF2 PDX中显示出治疗后48小时内GSPT1的剂量依赖性降解。 最后,我们检查了6种不同的PDX中SJ6986的抗肿瘤活性,代表所有人的高风险亚型,包括近单倍体,低h-高dip虫,CRLF2重键和重排,在体内28天。 在大多数肿瘤模型中, SJ6986能够以1 mg/kg剂量大大减轻肿瘤负担。 共同确认,SJ6986是一种新型的CRBN调节剂和潜在的治疗剂,它通过靶向具有高选择性和效力的GSPT1蛋白来治疗所有人。PD研究在IGH-CRLF2 PDX中显示出治疗后48小时内GSPT1的剂量依赖性降解。最后,我们检查了6种不同的PDX中SJ6986的抗肿瘤活性,代表所有人的高风险亚型,包括近单倍体,低h-高dip虫,CRLF2重键和重排,在体内28天。SJ6986能够以1 mg/kg剂量大大减轻肿瘤负担。共同确认,SJ6986是一种新型的CRBN调节剂和潜在的治疗剂,它通过靶向具有高选择性和效力的GSPT1蛋白来治疗所有人。
蚕豆是一种冷季豆科作物,世界各地都种植它作为食物和饲料。尽管过去蚕豆的种植面积有所减少,但由于其高种子蛋白含量和出色的生态服务功能,全球对种植蚕豆的兴趣正在增加。然而,这种作物受到各种生物和非生物胁迫,导致粮食产量不稳定、低产。虽然已经确定了对主要疾病的抗源,例如蚕豆壳针病 ( Ascochyta fabae Speg.)、锈病 ( Uromyces viciae-fabae (Pers.) Schroet.)、巧克力斑病 ( Botrytis fabae Sard.) 和瘿病 ( Physioderma viciae ),但它们的抗性只是部分的,如果没有农艺措施,就无法防止粮食产量损失。需要与宿主植物抗性基因紧密相关的 DNA 标记来增强抗性水平。在非生物胁迫方面取得的进展较少。提出了不同的育种方法,但迄今为止,基于谱系法的品系育种仍是育种计划中的主流做法。尽管如此,种子繁殖系数低、需要在防虫围栏下生长以避免杂交,以及缺乏双单倍体系统和细胞质雄性不育等工具,都阻碍了育种。这降低了育种群体的大小和育种速度,从而降低了捕获有利等位基因的稀有组合的机会。在育种计划中,蚕豆-蚕豆 (vc −) 和除草剂耐受性等 DNA 标记的可用性和使用鼓舞了育种者,并增强了对标记辅助选择的信心。与几种生物和非生物胁迫耐受性密切相关的 QTL 是可用的,它们在育种者友好平台上的验证和转换将增强选择过程。最近,基因组选择和快速育种技术以及基因组学已经触手可及,可以加速蚕豆的遗传增益。基因组资源与其他育种工具、方法和平台的进步将有助于加速育种过程,从而提高该物种的遗传增益。