由量子噪声造成的一般量子统一操作员被复制并插入一个相干超级式通道中,超过两个路径在嘈杂的单位上跨越探测器,并由控制量子驱动。对探针控制量子对的关节状态上的超塑通道进行的转换实现进行了表征。然后对超座通道进行特定分析,以分析嘈杂单一的相位估计的基本计量学任务,并由Fisher信息,经典或Quanth评估。与常规估计技术进行了比较,并通过最近研究了具有无限因果关系的量子切换通道,该通道最近研究了相似的相位估计任务。在此处的分析中,第一个重要的观察结果是,尽管它从未直接与估计的单一估计的单一相互作用,但可以单独测量它以进行有效的估计,同时丢弃与单一相互作用的探针Qubit。此属性也带有开关通道,但不可访问的技术无法访问。在一般条件下,此处表征了控制量子标筒的最佳测量。第二个重要的观察结果是,噪声在将控制矩偶联到单位的耦合中起着至关重要的作用,并且即使使用完全去极化的噪声,控制量矩形在非常强的噪声下仍可以进行相位估计的操作,而常规估计和切换通道在这些条件下也不正常。结果扩展了对相干控制通道的能力的分析,该通道代表可利用量子信号和信息处理的新设备。
摘要:锂离子电池在线监视由于其内部状态的不可衡量的特征而具有挑战性。到目前为止,电池监视的最有效方法是基于等效电路模型应用高级估计算法。此外,一种估计缓慢变化的不可估计的参数的通常方法是将它们包括在零时间导数条件下,构成所谓的扩展等效电路模型,并已广泛用于电池状态和参数估计。尽管将各种高级估计算法应用于联合估计和双重估计框架,但这些估计框架的本质尚未更改。因此,电池监视结果的改进有限。因此,本文提出了一种新的电池监视结构。首先,由于叠加原则,提取了两个子模型。对于非线性,进行了可观察性分析。表明,局部可观察性的必要条件取决于电池电流,电池容量的初始值以及相对于充电状态的开路电压的衍生物平方。然后,获得的可观察性分析结果成为提出新的监测结构的重要理论支持。选择并使用常用的估计算法,即卡尔曼过滤器,扩展的卡尔曼过滤器和无香的卡尔曼过滤器。使用合成数据的数值研究已证明了所提出的框架的有效性。使用合成数据的数值研究已证明了所提出的框架的有效性。除了提供电池开路电压的同时估算外,电池容量估计更快,更易用的电池容量估计是新提出的监测结构的主要优势。
在不同类型的电池中,锂离子电池因其性能和安全特性而成为最受欢迎的类型。需要电池管理系统来从这种电池中获得便捷的性能并尽可能延长电池的使用寿命。因此,良好的电池管理系统需要一个准确的电池模型。在本研究中,以代表开路电压变化的新一代汽车合作伙伴 (PNGV) 等效电路电池模型为基础,并基于 PNGV 等效电路电池模型创建分数阶电池模型。创建电池模型后,最重要的主题之一是模型参数的确定。在此阶段,为了简化问题,使用分层方法将测量的电池数据集划分为子层,并通过对每个子层进行分析和数据提取来确定参数,以反映不同的充电状态水平。这种方法有助于获得准确的电池模型,在每个电流脉冲期间,稳态误差小于 5 mV,瞬态误差小于 30 mV。
1尼泊尔尼泊尔市特里布瓦万大学农业与动物科学研究所Gokuleshwor农业和动物科学学院2 punamroka40@gmail.com
我们根据一个参数计算纯态下通用多体费米子系统的量子费歇尔信息。我们讨论了参数印在基态、状态系数或两者中的情况。在系数的参数依赖性来自哈密顿量演化的情况下,我们推导出一个特别简单的量子费歇尔信息表达式。我们将我们的发现应用于量子霍尔效应,并评估与有效哈密顿量基态系统磁场最佳测量相关的量子费歇尔信息。泡利原理强制占据高动量电子态导致灵敏度的“超海森堡”缩放,其幂律取决于传感器的几何形状。
摘要 — 由于脑动力学的复杂性,静息态功能性磁共振成像 (rsfMRI) 中血氧水平依赖性 (BOLD) 信号的传统建模难以进行参数估计。本研究介绍了一种新型脑动力学模型 (BDM),该模型通过微分方程直接捕捉 BOLD 信号变化。与动态因果模型或神经质量模型不同,我们将血流动力学响应整合到信号动力学中,同时考虑直接和网络介导的神经元活动效应。我们利用物理信息神经网络 (PINN) 来估计此 BDM 的参数,利用它们将物理定律嵌入学习过程的能力。这种方法简化了计算需求并提高了对数据噪声的鲁棒性,为分析 rsfMRI 数据提供了全面的工具。利用按估计参数缩放的功能连接矩阵,我们应用最先进的社区检测方法来阐明网络结构。我们的分析表明,在比较神经正常个体与自闭症谱系障碍 (ASD) 患者时,特定大脑区域的参与系数存在显著差异,男性和女性群体之间存在明显差异。这些差异与之前研究中涉及的区域一致,进一步证实了这些区域在 ASD 中的作用。通过将 PINN 与高级网络分析相结合,我们展示了一种分析 ASD 复杂神经特征的稳健方法,为神经成像和更广泛的计算神经科学领域的未来研究提供了一个有希望的方向。
我们表明,在基于代理的模型(ABMS)中,意见动力学的最大似然方法超出了典型的基于仿真的方法。基于仿真的方法会重复模拟模型,以寻找一组与观察到的数据相似的数据。相比之下,基于似然的方法得出了一种可能性函数,该函数将未知参数与观察到的数据以统计原则的方式连接到了观察到的数据。我们将这两种方法比较了众所周知的意见动力学模型。我们在数据可用性上增加复杂性的三种现实情况:(𝑖)完全观察到的意见和相互作用,(𝑖𝑖)部分观察到的相互作用,(𝑖𝑖𝑖)观察到与观点噪声代表的相互作用。为了实现基于可能性的方法,我们首先将模型投入到支持适当数据可能性的概率生成式的幌子中。然后,我们通过概率图形模型描述了三种情况,并显示了转化模型的细微差别。最后,我们在自动分化框架中实现了此类模型,从而可以通过差异下降来轻松有效地估算最大似然。这些基于可能性的估计值最高4倍,并且最多需要200倍的计算时间。
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,这种方法还不够,并且必须通过外部控制修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的有效性[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最后时间示意性地差异以最大化(或最小化)。除其他外,我们可以提到量子渔民信息(QFI)[10,15–30],选择性控制方案[31-39]和指纹识别方法[40-43]的最大化。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与特定可观察的特定可观察的方差成正比,该方差与哈密顿量的部分衍生物相对于参数进行估计。通过最大化此数量,我们确保参数的小扰动会引起对系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是本地的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为以不同参数值为特征的系统的不同副本的同时状态对状态控制协议[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控制系统的控件,以达到系统的每个副本,以达到(可能尽可能快)的目标状态,并专门选择目标状态以最大程度地减少测量误差。指纹方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定优点的最大化外,还可以包括其他约束来分析这些问题,例如控制时间或能量的最小化[56-59]。可以通过这些方法独立地获得不同的控制策略,例如,用于自旋系统的参数估计。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更一般而言,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有指纹方法已短暂地连接到[60,61]中的Fisher信息,但是QFI和选择性方案之间的关系仍未得到探索。为了简化分析,我们专注于链接
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,此方法不足以齐奏,必须通过外部控制来修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的效果[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最终时间时示意性地将要最大化(或最小化)的数量差异。除其他外,我们可以提及量子Fisher信息的最大化(QFI)[10,15-29] ::::::::::::::: [10,15–30],选择性控制协议[31-39]和fingerprinting方法[40-43]。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与可观察到的特定观察值的方差成正比,该方差与哈密顿的部分衍生物相对于参数估算的部分衍生物。通过最大化此数量,我们确保参数的少量扰动会引起系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是局部的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为同时的状态到状态控制协议,用于以参数的不同值为特征的系统的不同副本[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控件,该控件使我们能够(可能尽可能快)为系统的每个副本达到目标状态,并专门选择目标状态以最大程度地减少测量误差。填充方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定功绩的最大化外,还可以包括其他约束来分析这些问题,例如最小化控制时间或能量[56-59]。不同的控制策略。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更普遍地说,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有固定方法才与[60,61]中的Fisher信息连接起来,但是QFI与选择性协议之间的关系仍未得到探索。为了简化分析,我们专注于链接
X射线光电子光谱(XPS)数据的解释依赖于依赖几个参数的测量模型,包括光电衰减长度和X射线光子量。但是,其中一些参数尚不清楚,因为它们没有或无法测量。未知的几何参数可以在多弹性因子(对齐参数)中汇总在一起。此参数表征了令人兴奋的光与样品相互作用的能力。不幸的是,对齐参数的绝对值不能直接测量,部分原因是它取决于测量模型。相反,通常估计实验对准的代理,这与对齐参数密切相关。在此,一种基于原始XPS光谱的对齐参数的绝对值的方法(即未加工的光电子计数),显示样品的几何形状和光电子衰减长度。提出的参数估计方法可以使用简化的测量模型对XPS光谱进行定量分析。所有计算都可以在开放和免费的Julia语言框架预言中执行。为了证明可行性,对对齐参数估计方法进行了首次测试,并在模拟数据上使用已知的采集参数进行测试。然后将该方法应用于实验XPS数据,并显示了估计比对参数与典型使用的对齐代理之间的强相关性。