摘要:肿瘤微环境中的炎症环境会导致乳腺癌患者的免疫逃避、抵抗细胞死亡、转移和预后不良。TNF-α 是一种促炎性细胞因子,可调节肿瘤生物学从起始到进展的多个方面。TNF-α 诱导的 NF- κ B 激活可启动炎症途径,从而决定细胞存活、死亡和肿瘤进展。一种候选途径涉及自分泌运动因子的增加,自分泌运动因子会产生溶血磷脂,通过六种 G 蛋白偶联受体发出信号。值得注意的是,自分泌运动因子是转移性肿瘤中 40-50 个上调最多的基因之一。在本研究中,我们通过使用单克隆抗体英夫利昔单抗阻断 TNF-α 的作用来研究其作用,并研究其对自分泌运动因子和肿瘤进展的影响。英夫利昔单抗对肿瘤生长影响不大,但在使用 4T1 乳腺癌细胞的同源 BALB/c 小鼠模型中,它使肺转移减少了 60%。接受英夫利昔单抗治疗的小鼠的肿瘤增殖和转移标志物(如 Ki-67 和波形蛋白)也减少。同时,NF- κ B 活化、自分泌运动因子表达以及与转移有关的血浆和肿瘤细胞因子/趋化因子浓度也降低。我们还使用癌症数据库证明了乳腺癌患者中 TNF- α -NF- κ B 和 ATX 表达呈正相关。体外研究表明,TNF- α 诱导的 NF- κ B 活化会增加自分泌运动因子的表达和 4T1 乳腺癌细胞的克隆形成能力。本报告强调了英夫利昔单抗作为减弱自分泌运动因子-溶血磷脂-炎症循环信号传导和降低转移性癌症死亡率的另一种方法的潜在作用。
肾缺血再灌注 (I/R) 损伤可导致肾功能不全,严重情况下需要肾脏替代治疗,给患者的康复和生活带来沉重负担。减轻肾脏 I/R 损伤是当前的研究重点。蛋白激酶 C (PKC) 同工酶是肾脏中的主要同工酶,PKCβII 是其主要同工酶。铁死亡在肾脏 I/R 导致的急性肾损伤中起着至关重要的作用。本研究旨在探索 PKCβII 在肾脏 I/R 中的作用及其与铁诱导细胞死亡的潜在关联。该研究使用小鼠肾脏 I/R 模型,检查了各种预处理方法(包括 Ruboxistaurin(一种 PKCβII 抑制剂)和 Erastin(一种铁死亡激动剂))对肾脏损伤的影响。该研究还深入探讨了 PKCβII 在铁诱导细胞死亡中的作用及其潜在机制。研究结果表明,PKCβII 在肾脏 I/R 过程中被激活,抑制 PKCβII 激活可改善肾功能障碍和组织损伤。此外,肾脏 I/R 损伤中铁诱导的细胞死亡显著增加,而抑制 PKCβII 可通过抑制 PKCβII/ACSL4 通路来减轻铁死亡。总之,结果表明 PKCβII 可能参与介导肾脏 I/R 损伤,而针对性抑制 PKCβII 激活可能成为改善肾脏 I/R 损伤的一种新疗法。
本预印本的版权所有者(此版本于 2022 年 5 月 24 日发布。;https://doi.org/10.1101/2022.05.24.493068 doi:bioRxiv preprint
卵巢癌是妇科最常见的恶性肿瘤,根据最新统计,卵巢癌占生殖道癌症的22.9%(1),约80%的卵巢癌患者确诊时已发展至中晚期,死亡率居妇科癌症第一位(2)。临床上,铂类药物(顺铂、卡铂、奥沙利铂、奈达铂等)联合紫杉醇是卵巢癌的一线化疗方案,但70%的患者在初次治疗后复发并对铂类药物产生耐药,这是患者死亡的主要原因(3)。对于铂类耐药且复发的卵巢癌患者,需要进行与铂类无交叉耐药的二线化疗,常用的药物包括坎普托沙(CPT-11),但该类药物疗效有限且副作用较大(4)。 CPT-11是喜树碱的半合成衍生物,是DNA拓扑异构酶I(Topo I)的选择性抑制剂。但CPT-11的疗效并不高,ten Bokkel Huinink等研究发现,CPT-11对复发性OC的总有效率仅为20%~25%(5)。Takeuchi等的Ⅱ期临床研究(6)对52例接受过化疗的OC患者使用CPT-11治疗,也发现有效率仅为23%。此外,CPT-11有明显的不良反应,如迟发性腹泻和中性粒细胞减少(7),超过40%的患者使用CPT-11后出现Ⅲ~Ⅳ度腹泻,78.7%的患者出现中性粒细胞减少,Ⅲ~Ⅳ度中性粒细胞减少的发生率高达48%(8)。由于严重的副作用,必须提前停止治疗或减少剂量(9),这是限制其剂量和有效性的关键因素之一。
摘要 肿瘤抑制基因 p53 是癌症中最常见的突变基因,其中 R175H 是最常见的 p53 错义突变。然而,目前还没有针对突变 p53 的靶向疗法或免疫疗法获得批准。在这里,我们表征并研究了一种识别突变 p53-R175H 的单克隆抗体 (mAb),以了解其亲和力、特异性和体外抗肿瘤细胞活性。然后,我们将表达抗 R175H mAb 或双特异性抗体 (BsAb) 的 DNA 质粒递送到小鼠体内,以评估其治疗效果。我们的结果表明,抗 R175H mAb 以高亲和力特异性结合 p53-R175H 抗原,并识别 HEK293T 或 MC38 细胞上表达的人类突变型 p53-R175H 抗原,与野生型 p53 无交叉反应。在培养细胞中,抗 R175H mAb 表现出比对照更高的细胞毒性,但不会诱导抗体依赖性细胞毒性。我们在敲除内源性突变型 p53 等位基因后,制作了重组 MC38 小鼠细胞系 (MC38-p53-R175H),该细胞系过表达人类 p53-R175H。在体内,施用抗 R175H mAb 质粒对小鼠的 MC38-p53-R175H 产生了强大的抗肿瘤作用。抗 R175H BsAb 质粒的给药没有显示出治疗效果,但与抗 PD-1 抗体联合使用时观察到了强大的抗肿瘤活性。这些结果表明,针对特定突变表位使用
抑制或促进结合取决于与 C242 结合的化合物的精确性质。这让人想起以前的研究报告,p110 RBD 中单个残基的不同突变可以抑制 (K227A) 或激活 (K227E) PI3K 活性 (6, 27)。虽然抑制剂及其在癌症治疗中的可能作用是当前研究的主要重点,但 RAS/PI3K 相互作用的诱导剂也可能具有激活 PI3K 的临床效用 45
在 LV 介导的 ZF-R 递送至 CD3+ 细胞后,MHCI 和 CD5 抑制有效且持久。(A) CD5 基因 mRNA 敲低与 CD5 ZF-R 结合位点 (三角形) 的示意图;颜色越深表示抑制越强。选定的 CD5 ZF-R 以蓝色突出显示。(B) 生成了递送多达两个 ZFR 的 LV 粒子面板,以评估 CD3+ 细胞中的抑制效率。(C) 通过流式细胞术测量 NGFR+/MHCI- 和 NGFR+/CD5- CD3+ 细胞的百分比来量化 CD5 (左) 和 B2M (右) 抑制效率。(D) 通过监测注射到 NXG 小鼠体内 10 周的 NGFR+/MHCI- 和 NGFR+/CD5- CD3+ 细胞来评估 B2M 和 CD5 抑制的持久性。 (E) FACS 图显示注射前(左)和注射后 10 周在血液(中)和脾脏(右)中转导的 CD3+ 细胞中同时出现的 MHCI 和 CD5 抑制。
1 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物与地质学院综合生物学博士学院,2 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物与地质学院系统生物学、生物多样性与生物资源中心分子生物学与生物技术系,3 德国慕尼黑工业大学医学院皮肤病学与过敏学系,4 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物纳米科学跨学科研究所分子生物学中心,5 罗马尼亚克卢日-纳波卡 NIRDBS 布加勒斯特分校生物研究所实验生物学与生物化学系,6 罗马尼亚 Iuliu Hatieganu 医药大学药学院制药技术与生物制药学系,罗马尼亚 克卢日-纳波卡
摘要。除了化疗外,靶向疗法已被批准用于治疗局部晚期和转移性胃癌。治疗效果显著,但应实现更持久的反应和生存率的提高。因此,确定新的靶点和新的临床治疗方法至关重要。在这篇综述中,我们在文献中搜索了干扰可用药靶点并在临床前体内疗效模型中表现出疗效的下调 microRNA。作为可用药靶点,我们选择了跨膜受体、分泌因子和酶。我们确定了 38 个符合所述标准的 microRNA。共有 13 个 miR 靶向跨膜受体,9 个抑制分泌蛋白,16 个减弱酶。这些 microRNA 是胃癌重建治疗的靶点。对于所有已确定的 microRNA,必须进行进一步的靶点验证实验。胃癌 (GC) 是全球第三大癌症病因,也是第四大常见癌症,全球每年死亡人数为 700 000 人 (1)。从分子角度来看,已鉴定出以下亚型:Epstein–Barr 病毒、微卫星不稳定性、
CDK4/细胞周期蛋白 D 激酶是开发抗癌疗法的一个有吸引力的药理学靶点,特别是对于 KRAS 突变的肺癌患者,这些患者预后不良,目前尚无可用的靶向疗法。尽管已经开发出几种 ATP 竞争性 CDK4 抑制剂用于抗癌治疗,但它们的特异性和有效性有限。方法:作为 ATP 竞争性抑制剂的替代品,我们设计了一种钉合肽来靶向 CDK4 和细胞周期蛋白 D 之间的主要界面,并表征了其物理化学性质和与细胞周期蛋白 D1 结合的亲和力。结果:我们证实了肺癌患者的 CDK4/细胞周期蛋白 D 水平与 KRAS 突变之间存在正相关性。钉合肽能迅速有效地进入细胞,抑制肺癌细胞中的 CDK4 激酶活性和增殖。小鼠肺内给药可使其在原位肺肿瘤中保留,并与 Abemaciclib 联合使用时完全抑制其生长。结论:针对 CDK4 和细胞周期蛋白 D 之间主要界面的钉合肽为肺癌患者提供了有希望的治疗前景。