抽象的遗传密码扩展(GCE)已通过实现非经典氨基酸(NCAA)的位点掺入到蛋白质中,已成为生物学的关键工具。GCE的中心是正交氨基酰基-TRNA合成酶(AARS)/tRNA对的开发,其中工程的AARS识别所选的NCAA并将其充电到解码空白密码子的TRNA(例如,琥珀终止密码子)。许多正交的AARS/tRNA对涵盖了广泛的NCAA,这是通过定向进化产生的,但是标准策略通过标准策略的新AARS/TRNA对的演变仍然是一个劳动密集型的过程,通常会产生AARS/TRNA对,并产生副最好的NCAA NCAA INCAA Incorpiesies。在这项研究中,我们提出了一种发展AARS的策略,该策略利用Orthorep来推动其在酵母中的连续超女。我们在8个独立的AARS进化运动中展示了我们的战略,从4个不同的AARS/tRNA父母开始,针对7个不同的NCAA。我们观察到了多种新型AARS的快速演变,能够将13个NCAA的整体范围纳入响应于琥珀色密码子的蛋白质中。一些进化的系统达到了琥珀色密码子指定的NCAA依赖性翻译的效率,可与酵母中有义务密码子指定的天然氨基酸翻译相当。此外,我们发现了一个令人惊讶的AAR,它演变为自我调节自己的表达,以更大程度地依赖NCAA进行翻译。这些发现证明了由Orthorep驱动的AARS进化平台支持GCE技术持续增长的潜力。
摘要:迫切需要新药物来预防和治疗疟疾。大多数抗疟药发现依赖于表型筛查。但是,随着改进的目标验证策略的发展,现在正在利用以目标为中心的方法。在这里,我们描述了工具包的开发,以支持有希望的靶靶标,赖氨酸TRNA合成酶(PF KRS)的治疗性开发。该工具包包括抗性突变体,以探测抗性机制和针对特定化学型的靶向参与;一种能够产生适合配体浸泡的晶体的杂种KRS蛋白,从而提供高分辨率的结构信息以指导化合物优化;化学探针促进旨在揭示各种特定相互作用蛋白质和热蛋白质组谱分析(TPP)(TPP)的下拉研究;以及简化的等温TPP方法,可在生物学相关的环境中无公正地确认靶向靶向。这种工具和方法的组合充当开发未来目标软件包的模板。关键字:疟原虫,赖氨酸TRNA合成酶,热蛋白质组分析(TPP),等温TPP,化学下拉,抗疟药
细菌抗生素持久性是一种现象,即细菌暴露于抗生素后,大多数细菌死亡,而一小部分细菌进入低代谢持久状态并能够存活。一旦去除抗生素,持久性细菌群落可以复苏并继续生长。这种现象与几种不同的分子机制和途径有关。细菌抗生素持久性的一个常见机制可能是蛋白质合成的扰动。为了研究这种机制,我们鉴定了四种不同的 metG 突变体,以确定它们是否能够提高抗生素持久性。两种 metG 突变体编码 MetRS 催化位点附近的变化,另外两种突变体编码反密码子结合域附近的变化。metG 中的突变尤其令人感兴趣,因为 MetRS 负责启动 tRNA Met 和延长 tRNA Met 的氨酰化,这表明这些突变体可能影响翻译起始和/或翻译延长。我们观察到所有 metG 突变体都提高了抗生素持久性水平,而野生型 metG 的转录水平也降低了。虽然 MetRS 变体本身不会对 MetRS 活性产生影响,但它们确实降低了翻译率。我们还观察到 MetRS 变体影响同型半胱氨酸的校对机制,并且这些突变体的生长对同型半胱氨酸高度敏感。结合以前的研究结果,我们的数据表明,细胞 Met-tRNA Met 的减少
摘要:遗传密码扩展(GCE)可以使非典型氨基酸(NCAA)的位点选择性掺入蛋白质中。GCE已大大提高,可用于在细胞内部创建生物策略手柄,监测和控制蛋白质,研究翻译后修饰和工程新蛋白质功能。自建立我们的实验室以来,我们的研究集中在使用氨基酰基-TRNA合成酶/tRNA(AARS/tRNA)对中GCE在蛋白质和酶工程中的应用。该主题已经进行了广泛的审查,毫无疑问,GCE是工程蛋白质和酶的强大工具。因此,对于这个年轻的教师问题,我们想对我们使用的方法以及我们在实验室中考虑的挑战进行更技术性的了解。自启动实验室以来,我们已经成功地使用了针对各种GCE应用量身定制的十二个新颖的AARS/tRNA对。但是,我们承认该领域即使对于专家也会构成挑战。因此,在此,我们提供了NCAA合并中的方法论,并提供了一些实践评论,并将重点放在挑战,新兴解决方案和令人兴奋的发展上。
利用放射免疫沉淀分析(RIPA)裂解缓冲液(Servicebio,武汉,中国)获得总蛋白。使用双辛可宁(BCA)分析(Solarbio,北京,中国)定量蛋白质浓度。加入上样缓冲液后,将样品煮沸 5 分钟。然后,将 20 μg 蛋白质添加到每个泳道中,通过 8–15% 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,然后转移到聚偏氟乙烯(PVDF)膜上,用 5% 脱脂奶粉在含有 0.1% Tween 20 的 Tris 缓冲盐水(TBST)中封闭 2 小时。将稀释的针对 OASL(1:1,000)和 3-磷酸甘油醛脱氢酶(GADPH;1:10,000)的一抗与膜在 4 ℃ 下孵育过夜。用TBST清洗10 min后,与相应抗体孵育2 h,再用TBST清洗膜3次,最后采用电化学发光法(ECL,Thermo,China)观察结果。
胞质谷氨酰胺合成酶(GS1)是主要负责玉米叶中的铵同化和重新合并的酶。通过检查酶在叶细胞中酶的过表达的影响,研究了GS1在玉米核产生中的农艺潜力。使用在该领域生长的植物产生并表征了表现出三倍的叶子GS活性增加三倍的转基因杂种。在不同位置,在叶片和束鞘鞘中的叶片和束鞘鞘中的几种过表达GLN1-3(GLN1-3)的基因(GS1)在不同位置生长了五年。平均而言,与对照组相比,转基因杂种中的核产量增加了3.8%。但是,我们观察到,给定领域试验的环境条件和转基因事件同时依赖于这种增加。尽管从一个环境到另一个环境变化,但在不同位置的两个GS1基因(GLN1-3和GLN1-4)多态性区域和核产量之间也发现了显着关联。我们建议使用基因工程或标记辅助选择的GS1酶是产生高屈服玉米杂种的潜在潜在领导者。但是,对于这些杂种,产量增加将在很大程度上取决于用于种植植物的环境条件。
摘要:之前,DNA 微阵列分析表明,在与枯草芽孢杆菌共培养中,锚定在黑曲霉非核糖体肽合成酶上的生物合成基因簇被下调。基于系统发育和同源性分析,我们发现这个基因簇 NRRL3_00036-NRRL3_00042 包含预测编码非核糖体肽合成酶、含 FAD 结合结构域的蛋白质、未知蛋白质、转运蛋白、细胞色素 P450 蛋白、含 NAD(P) 结合结构域的蛋白质和转录因子的基因。我们过表达了簇内转录因子基因 NRRL3_00042 。过表达菌株 NRRL3_00042 OE 表现出生长速度降低和黄色色素产生减少,质谱分析显示黄色色素对应于两种化合物,质量分别为 409.1384 和 425.1331。我们删除了 NRRL3_00042 OE 菌株中编码 NRRL3_00036 非核糖体肽合成酶的基因。所得菌株恢复为野生型表型。这些结果表明,由 NRRL3_00036 非核糖体肽合成酶基因锚定的生物合成基因簇受簇内转录调控基因 NRRL3_00042 调控,并且它参与了两种以前未表征的化合物的生产。
抽象的氨基酰基-TRNA合酶(AARSS)是对蛋白质合成本质的家务酶。但是,越来越明显的是,某些AARS也具有非翻译功能。在这里,我们报告了三酰基-TRNA合成酶(THRRS)在肌源性分化中的非翻译功能的鉴定。我们发现,THRS在体外对体外和损伤诱导的骨骼肌再生进行负调节。此功能独立于THRR的氨基酸结合或氨基酰化活性,而THRR的敲低会导致增强的分化,而不会影响整体蛋白质的合成速率。此外,我们表明,THRR的非催化新域(UNE-T和TGS)对于肌原性功能是必需的且足够的。在寻找这种新功能的分子机制时,我们发现激酶JNK是THRR的下游靶标。我们的数据表明MEKK4和MKK4是肌发生中JNK的上游调节剂,而MEKK4-MKK4-JNK途径是THRR的肌源功能的中介。最后,我们表明THRR与AXIN1物理相互作用,破坏AXIN1-MEKK4相互作用,从而抑制JNK信号传导。在结论中,我们在维持骨骼肌发生稳态时发现了THRR的非翻译功能,并确定AXIN1-MEKK4-MKK4-MKK4-JNK信号传导轴是THRRS动作的直接目标。
摘要:糖合成酶是突变的糖基水解酶,可以在受体糖酮/aglycone基团和活化的供体糖之间合成糖苷键,并具有合适的离开组(例如Azido,Fluoro)。但是,快速检测涉及偶氮糖作为供体糖的糖合酶反应产物的糖合酶反应产物一直具有挑战性。这限制了我们将合理工程和定向演化方法应用于快速筛选的能力,以改善能够合成定制聚糖的聚糖合成酶。在这里,我们概述了我们最近开发的筛查方法,用于使用模型的岩藻合成酶酶快速检测糖合酶活性,该酶设计为活性在岩藻糖基叠氮化物供体糖上。我们使用半随机和随机误差诱发诱变创建了一个多元化的建筑物联合组织突变体库,然后使用我们的小组开发的两种不同的筛选方法来鉴定了具有所需活性的相关的岩体合成酶突变体,以检测糖合酶的活性(即,通过检测在纤维蛋白酸盐反应后的同体形式上检测偶极外形); a)PCYN-GFP调节方法,b)单击化学方法。最后,我们提供了一些概念验证结果,说明了两种筛查方法的实用性,以快速检测涉及氮杂糖作为捐助者组的糖合酶反应的产物。