摘要:现今,研究、建模、仿真和实现类脑系统以重现大脑行为已成为迫切的需求。本文通过建模两个基于霍普菲尔德神经网络(HNN)的神经网络模型来模拟神经爆发与同步。第一个神经网络模型由四个神经元组成,对应实现神经爆发放电。理论分析和数值模拟表明,简单的神经网络可以产生丰富的爆发动态,包括每次爆发有不同的脉冲的多个周期性爆发放电,多个共存的爆发放电,以及具有不同幅度的多个混沌爆发放电。第二个神经网络模型使用由两个以上小神经网络组成的耦合神经网络来模拟神经同步。基于李雅普诺夫稳定性理论从理论上证明了耦合神经网络的同步动力学。大量仿真结果表明耦合神经网络能够产生依赖于突触耦合强度的不同类型的同步行为,如反相突发同步、反相尖峰同步、完全突发同步等。最后,设计并实现了两个神经网络电路,展示了所构建神经网络的有效性和潜力。
本文解决了在实施同步混合语言教学时更好地了解互动不对称,挑战和解决方案的必要性。我们在高等教育教学环境中调查了视频记录的同伴互动,其中Stu Dent使用远程介绍机器人(一种可移动的视频会议工具),以与在语言课堂上的物理学生一起参加L2英语的小组任务工作。借鉴了多模式对话分析,我们研究了地理分散的同伴群体如何在完成任务时完成与任务相关的学习材料的共同关注,以及这种参考的互动互动工作如何使他们的合作作为一个小组。基于分析,我们认为在同步混合学习中,有必要反射性调整互动实践,以确保对学习任务及其促进性的主体间理解。该发现还表明,在开发和实施同步的混合学习环境时,应考虑感官和互动不对称的,无论参与模式如何,旨在旨在实现机会平等。
我们研究了受人脑皮质的连接结构启发的神经元网络模型的同步属性。神经元模型由网络组成组成,其中每个网络都是无标度网络,它们之间的连接取自LO和协作者提出的人类连接矩阵[J. J.神经科学30,16876(2010)]。神经动力学由rulkov二维离散时间图控制,神经元与不同皮质区域之间的耦合通过化学突触发生。单个神经元以特征阶段和频率散发爆发活动。爆发同步,并且可能与某些病理节奏的存在有关。爆发同步的总或部分抑制已被指向深度大脑刺激技术的基础动力学机制,以减轻这种病理。在这项工作中,通过在神经元网络的某些区域中使用外部信号应用外部信号来采用同步抑制技术。我们的结果表明,同步的抑制取决于应用信号的时间延迟和强度的值。
对集成系统中关键单元进行有效组合的需求日益增加。SoC 系统的开发旨在提供芯片级集成,这成为集成电路发展的必然趋势,并广泛应用于智能手机、工业应用和微控制器。ARM AMBA 协议是系统各个部分之间交互的普遍采用的方式。在 AMBA 架构中,AHB 到 APB 桥接器对于在 SoC 系统中结合高性能 AHB 总线和低功耗 APB 总线做出了重要贡献。本项目旨在使用 Verilog 实现 AHB 到 APB 桥接器,从而实现这两条总线之间的稳定数据传输。所提出的 AHB 到 APB 桥接器旨在适应不同的读写策略并确保 APB 总线上外设的正常工作。该桥接器已通过 Verilog 硬件描述语言 (HDL) 实现。创建了一个测试台,其中有一个虚拟 AHB 主机和一个优化的 SRAM 作为高速 APB 外设。Verdi 仿真表明该桥接器完全符合设计意图。关键词:AHB 到 APB 桥接器;片上系统 (SoC); AMBA 协议。
umass.edu › ramanathan_clksync PDF 作者:P Ramanathan — 作者:P Ramanathan 最大可靠性和高性能......商用飞机的规定小于......通过使用数字签名²或。
目前,我们对儿童独自一人看屏幕时大脑如何关注和学习所呈现的信息了解很多,但对人际社交影响如何在大脑中得到证实了解甚少。在本文中,我们将研究社交行为如何影响二元组中的一方,而不是一方。我们回顾了在早期社交互动过程中测量人际神经同步的研究,考虑了两种测量同步的方法:并发同步(例如,“当 A 很高时,B 也很高”——也称为同步)和顺序同步(“A 的变化预测 B 的变化”)。我们讨论了人际神经同步的可能原因,并考虑它是否仅仅是一种附带现象,或者它是否在早期注意力和学习中发挥着独立的机械作用。
GE 同步调相机旨在提供无故障、可靠的服务,是一种经过验证的解决方案,近一个世纪以来已有 200 多个应用。材料和制造技术的进步,加上现代控制技术,极大地提高了这种坚固、久经考验的解决方案的可靠性和功能性。操作员现在可以利用机电系统的简单性以及最先进的励磁和控制系统的优势来满足他们的电网支持需求。
对于所有 OEM 的设备,JEUMONT Electric 为其功率范围及以上的中高压发电机提供广泛的服务,最高可达 1600MVA。该公司可以在 Jeumont 工厂或全球现场调动 60 多名经验丰富的工程师和技术人员(研发、设计、装配、绕线、调试)。他们的设计和干预能力以及制造和测试手段使他们能够涵盖专门针对此类机器的全方位服务:• 测试和评估 • 纠正或程序化维护 • 维修、改造、更换、逆向工程。• 机器和网络工程(稳定性、瞬态、保护、
人工智能 (AI) 有望在从任务设计规划到卫星数据处理和导航系统等太空操作领域取得突破。人工智能和太空运输的进步使人工智能技术能够应用于航天器跟踪控制和同步。本研究评估了三种替代的航天器跟踪控制和同步 (TCS) 方法,包括非人工智能 TCS 方法、人工智能 TCS 方法和组合 TCS 方法。该研究提出了一种混合模型,包括一个用于定义权重系数的新模型和基于区间型 2 模糊集的组合折衷解 (IT2FSs-CoCoSo) 来解决航天器 TCS 问题。一种新方法用于计算标准的权重系数,而 IT2FSs-CoCoSo 用于对 TCS 方法的优先级进行排序。进行了比较分析以证明所提出的混合模型的性能。我们通过一个案例研究来说明适用性,并展示所提出方法的有效性,该方法基于十个不同的子标准对替代 TCS 方法进行优先排序,这些子标准分为三个主要方面,包括复杂性方面、操作方面和效率方面。根据本研究的结果,人工智能和非人工智能方法相结合是最有利的替代方案,而非人工智能方法则是最不有利的。2022 COSPAR。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
英飞凌的 144 Mbit 四倍数据速率 (QDR™)-II+ 同步 (Sync) SRAM 采用英飞凌专利的 RadStop™ 技术设计,针对太空以及其他恶劣环境应用进行了优化。144 Mbit QDR™ II+ SRAM 是下一代 QDR™ II+ SRAM 设备,延续了航天级传统,比上一代具有更低的功耗和更高的性能。QDR™ II+ SRAM 提供 x18/x36、双字/四字数据总线配置,并带有或不带有片上终端以优化功耗。QDR™ II+ SRAM 架构提供低延迟和随机内存访问能力,这是外部缓存存储器等高性能应用所需的。英飞凌的 QDR™ II+ 同步 SRAM 系列提供随机