历史学家谈论他们的资料,数据的经济学家。这不是纪律词汇的简单问题。资料来源是为研究人员提供的文档,档案或其他痕迹,他将其解释为撰写历史。为了进行这种解释,对来源的分析使用了理论概念。来源包括一个定量维度(许多相同的文档,提及许多个人或可比事实的文件)时,概念类别的定义使得有可能系统地接近此维度。数据是此分类的结果。尽管“数据”一词表明相反,但数据是第一次科学发展的结果。他们仅适用于研究人员 - 社会科学领域的许多人 - 他们在第一次操作中依靠他人。科学劳动部导致它委托给统计机构,尤其是在这种建筑成本很高的情况下,无论是在工作时间还是财务手段方面。那些未建造数据的人相关使用数据的条件是微妙的,因为他们必须了解从中解决某些问题的限制。将源转化为数据也是一个微妙的练习。自19世纪以来,官方的统计机构已经逐渐实施了精致和国际同质的方法论。有些人倾向于忘记他们,因为“数据”似乎很熟悉,因此对他们来说很自然,缺乏统计类别的“重新化”(以真实的事实为例),这是人们永远不会保护自己的能力,并且特别震惊的历史学家更有能力观察某些类别对某些eras的不合人类本质。历史学家已将其脱离或启发,并学会了开发适合其问题和对象的严格数据库1。在这里,我们想强调将资源转化为数据的重要一点,这些数据在每个时代都会影响经济学家,也影响了历史学家:他们共享的理论框架。在大规模上,关于经济数据的一般概念框架,可以在20世纪进行三个主要时刻,这是我们称为价格时代,数量时代和个人时代的时刻。在第一个中,经济活动主要是通过价格观察到的,这是由价格理论的优势证明的。在第二个中,有组织的数量测量是由国民叙述在SO所谓的凯恩斯主义宏观经济理论的框架内产生的,然后是生长理论。当今对这些先前框架的批评导致了大量措施的实验,这些措施以分析的信息质量,源和数据之间的含糊不清以及多种概念框架。这三个阶段,如果他们想与以前的阶段打破每个阶段,那么仍然保持了很大一部分成就。
收件人:相关方 发件人:Shalanda Young,管理和预算办公室主任 日期:2023 年 5 月 16 日,星期二 主题:众议院拨款法案 众议院共和党人试图大幅削减自由支配资金,这是他们要求的核心,以换取履行宪法规定的避免违约的义务。众议院共和党人上个月通过的法案在设计上含糊不清,并没有解释他们提议的削减将如何分散到拨款法案中——让美国人民想知道哪些项目将被削减。为了填补这些空白,政府进行了广泛的分析,表明如果众议院共和党人信守诺言,不削减国防开支,那么共和党人提议的削减将对教育、公共安全、儿童保育、退伍军人医疗保健等产生严重影响。虽然这些都可以在最初的立法中明确规定,但都没有。最近几天,一些共和党人表示,他们将改变方向,避免削减某些类型的资金,并将发布拨款法案来证明这一点。这份备忘录以这些分析为基础,通过研究众议院共和党人本周开始的支出法案加价,来告诉我们他们计划的削减情况。众议院共和党人可能会试图继续隐藏预算中的削减,并且可能只发布几项支出法案,而不是一份完整的拨款清单,说明他们将如何为每一项拨款法案提供资金。换句话说,他们希望因削减的规模而获得赞誉,却不对其影响承担任何责任。然而,即使众议院共和党人只发布几项法案,他们的做法也将为我们提供一个清晰的路线图,让我们了解他们的严厉削减最终将如何影响美国人民。如下所述,可能的影响是,除国防、退伍军人事务部和国土安全部之外的所有领域将削减至少 30%,严重影响包括美国国立卫生研究院的癌症研究、老年人送餐上门、数千名儿童的学前教育和托儿服务以及退伍军人事务部以外的退伍军人项目。众议院共和党人的预算计算众议院共和党人仅以共和党人投票通过的法案将 2024 财年的总拨款设定为与 2022 财年相同的水平,而让这 12 项拨款法案都符合这一计算的最简单方法是将它们全部削减 9%,包括军事、退伍军人医疗、边境安全等。这些削减将极具破坏性、自相矛盾且不受欢迎。如果众议院共和党人选择不削减军事、退伍军人医疗和边境安全的资金,那么他们对其他所有方面的削减必须进一步加大。计算是明确的。例如,众议院领导人已经承诺,他们将保护国防资金不受削减。如果他们的国防拨款法案仅仅将资金维持在基线水平——那
拉丁美洲议会 (Parlatino) 最近推出了《神经权利示范法》,为成员国提供监管神经科学和神经技术的框架。然而,这项倡议存在重大的理论、概念和科学问题,这引发了人们对其应用和便利性的严重担忧。本文批判性地审查了拟议法律的关键条款,强调了其含糊不清、缺乏技术严谨性以及过度依赖模糊的伦理法律概念。它认为,采用这样的框架可能会导致仓促和缺乏根据的公共政策和神经科学法规,无法解决神经技术带来的真正挑战。本文建议,立法者不应制定抽象、无知和过于宽泛的法规,而应专注于具体的、基于证据的法律、软法方法、国际标准和全球知情原则,以应对国家和国际层面的真正风险。在此之前,有人建议不应将 Parlatino 示范法纳入任何立法,拟议的法律只是神经权利立法不应有的典范。2017 年,正式提出创建一类新的基本权利,即“神经权利”。这一概念首次由 Ienca 和 Andorno (2017) 提出,他们提出了四项核心神经权利:认知自由、精神隐私、精神完整性和心理连续性。同年,Yuste 等人在《自然》杂志上发表了一篇评论,进一步强调了围绕神经技术和人工智能的伦理问题(Yuste 等人,2017 年)。作为回应,神经权利倡议(后来转变为神经权利基金会)成立。该倡议提出了五项神经权利:精神隐私、个人身份、自由意志、公平获得精神增强的机会以及对算法偏见的保护(神经权利基金会,2024 年)。一些拉丁美洲国家和地区组织已推进改革,将神经权利纳入其法律框架,并采用了不同的立法方式(Borbón 和 Ramírez-Gómez,2024 年)。智利率先进行了这些努力,修改了宪法第 19 条,以保护心理完整性和大脑活动。继智利之后,墨西哥、巴西、阿根廷和哥伦比亚等其他国家也在推进新的法案,目前正在由立法者研究(Borbón 和 Ramírez-Gómez,2024 年)。软法方法也已出现,例如美洲法律委员会 2023 年的宣言概述了神经技术的 10 项原则(美洲法律委员会 - OAS,2023 年)。另一项重要的区域发展正是拉丁美洲议会示范法。
2025 年 1 月 10 日建议采取标准行动以应对 FERC 关于 EOP-012-2 行动的指令审查并向 NERC 董事会 (Board) 采取行动,以确保及时制定可靠性标准 EOP-012-2 的修订,按照联邦能源管理委员会 (FERC) 在其 2024 年 6 月 27 日的命令中的指示。 1 背景 2021 年 2 月 8 日至 20 日,极端寒冷天气和降水影响了美国中南部。大量发电机组出现停电、降额或无法启动,导致能源和输电紧急情况。在 2021 年 2 月的事件中,系统状况下降,以至于系统运营商最终下令进行美国历史上最大规模的受控稳定负荷削减事件,也是继 2003 年 8 月东北部大停电和 1996 年 8 月西海岸大停电之后停电兆瓦 (MW) 负荷数量第三多的事件。 2021 年 2 月的事件对经济和人类产生了巨大影响。根据董事会 2021 年 11 月的决议,NERC 优先处理 FERC、NERC 和区域实体工作人员关于 2021 年 2 月事件的联合报告中提出的可靠性标准相关建议。从 2021 年到 2024 年初,2021-07 极端寒冷天气准备和运营项目制定了可靠性标准以解决报告中的建议。这些标准中有一项新的可靠性标准,即可靠性标准 EOP-012,用于解决发电机寒冷天气准备问题。FERC 于 2023 年 2 月 16 日批准了 EOP-012 标准的第一个版本,即可靠性标准 EOP-012-1(2023 年 2 月命令)。 2 在 2023 年 2 月的命令中,FERC 指示对可靠性标准 EOP-012-1 及其相关实施计划进行进一步修改,并指示这些更改必须在命令发布之日起一年内或 2024 年 2 月 16 日之前提交。为了响应 2023 年 2 月的命令,NERC 制定了可靠性标准 EOP-012-2。2024 年 6 月 27 日,FERC 发布命令批准可靠性标准 EOP-012-2,但指示 NERC 修改该标准,发现需要进一步改进以解决含糊不清的语言并解决标准中的其他可靠性差距/实施问题。FERC 表示,“本命令中对 NERC 的五项核心指令不是新问题,而是有针对性的修改,这些修改对于全面解决委员会之前 2023 年 2 月命令中确定的问题是必不可少的。” 3 FERC 指示 NERC 制定进一步的修改,并在 2025 年 3 月 27 日之前提交修订后的标准。在 2024 年期间,2024-03 项目起草团队发布了两个版本的 EOP-012-3 标准草案和相关实施计划,供 NERC 的《标准流程手册》征求意见和投票。标准委员会已批准了程序豁免,
我们有一种天真的古典直觉,认为我们最好的理论应该能够告诉我们物理过程的持续时间。受这种简单的古典图景的启发,物理学家们问道,量子粒子穿过经典禁能垒需要多长时间?换句话说,量子隧穿时间的正确表达式是什么?与经典问题不同,这个问题似乎没有一个直接的答案,并在物理学文献中引发了广泛的争论。物理学家提出了各种量子隧穿时间的表达式。一些跟踪隧穿系统的内部特性,而另一些则依赖于隧穿粒子和外部物理系统之间的耦合。一般来说,它们都提供了不同的值——只在某些限制内相一致——并且它们在大多实用的基础上相互权衡。然而,一些作者仍然在谈论,好像有一个明确而独特的表达可以找到,或者至少好像一些提出的表达本质上比其他表达更有意义。许多人认为,这种明显的歧义源于量子力学对待时间的一般方式:将其视为参数,而非算符。其他人则强调了这场争论的解释维度,甚至认为隧穿时间在量子力学的标准解释中毫无意义。然而,这种混乱和歧义只存在于标准的“正统”或“哥本哈根”解释中——所有考虑德布罗意-玻姆“导波”解释传统形式的作者都同意,这种解释为隧穿时间提供了一个清晰明确的表达,其中量子态由受波函数演化引导的物理德布罗意-玻姆粒子组成。这引发了人们的猜测:量子隧穿时间的实验测试是否可以作为传统形式的德布罗意-玻姆理论的实验测试。因此,关于量子隧穿时间的文献现状自然而然地引出了三个物理和哲学问题。首先,关于隧穿时间的困惑是否真的源于量子力学中更普遍的“时间问题”——即时间缺乏算符这一事实?其次,隧穿时间在量子力学的标准解释中真的是一个毫无意义的概念吗?如果是,为什么?最后,原则上,是否可以使用量子隧穿时间的实验测试作为德布罗意-玻姆解释的实验测试?本文旨在依次回答每个问题。自始至终,我都局限于德布罗意-玻姆理论的传统版本,其中隧穿时间是清晰明确的——其他关于导航波程序所依据的本体论的提议,虽然本身就很吸引人,但与我要提出的概念点无关。在本文的前半部分,即第 2 节中,我概述了现有的关于量子隧穿时间的文献。第 2.1 节解释了隧穿时间讨论所基于的物理场景。在第 2.2 节中,我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于标准解释中隧穿时间的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我指出,尝试建立特定于传输粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左缝还是右缝(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,关于是否可能在原则上将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图案保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——当它们出现时,它们被插入更长的简短评论中我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的
请在我们身份验证您的情况下等待...2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。 但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。 例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。 Berger,J。2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。Berger,J。一些研究人员提出了各种技术来提出专家判断以告知先前分布的技术。,例如,O'Hagan等。(2006)提供了先前启发的综合指南,包括技术和潜在的陷阱。其他研究的重点是开发使用贝叶斯先验的专家的信念的方法(例如,Johnson等,2010)。此外,还有各种可用的在线资源可以帮助进行贝叶斯分析。例如,Van de Schoot的在线统计培训提供了有关高级统计主题的教程和练习。总的来说,在组织科学中使用贝叶斯方法的使用变得越来越重要,但是它需要仔细考虑先前的分布和启发技术,以确保准确的结果。注意:我已经删除了一些特定的参考,并重点介绍了要点。让我知道您是否希望我保留更多原始文本!van de de Schoot-Hubeek,W.,Hoijtink,H.,Van de Schoot,R.,Zondervan-Zwijnenburg,M。&Lek,K。评估专家判断引发程序,以相关性和应用于贝叶斯分析。客观的贝叶斯分析:对主观贝叶斯分析的案例,批评和个人观点。Brown,L。D.经验贝叶斯和贝叶斯方法的现场测试,用于击球平均赛季预测。Candel,M。J.,Winkens,B。Monte Carlo研究在纵向设计中多级分析中的经验贝叶斯估计值的性能。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。darnieder,W。F.贝叶斯方法依赖数据依赖的先验。&Chen,F。权力先验:具有统计功率计算的理论和应用。Muthen,B。,Asparouhov,T。贝叶斯结构方程建模:使用数据依赖性先验对实体理论的更灵活的表示。Rietbergen,C.,Klugkist,I.,Janssen,K。J.,Moons,K。G.&Hoijtink,H。将历史数据纳入随机治疗试验的分析中,以及基于系统文献搜索和专家精力提示的知识的贝叶斯PTSD-Traigntory分析。van der Linden,W。J.在自适应测试中使用响应时间进行项目选择。Wasserman,L。使用数据依赖性先验对混合模型的渐近推断。请注意,我保留了您的消息的原始语言而不翻译。给定文本:释义此文本:数据(版本V1.0)。Zenodo(2020)。元素Google Scholar Chung,Y.,Gelman,A.,Rabe-Hesketh,S.,Liu,J。&Dorie,V。层次模型中协方差矩阵的点估计值较弱。J.教育。行为。Stat。40,136–157(2015)。Google Scholar Gelman,A.,Jakulin,A.,Pittau,M。G.&Su,Y.-S。 logistic和其他回归模型的弱信息默认分布。ann。应用。Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。 B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。 2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。 am。 Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。am。Stat。3(Clarendon,1961).Seaman III,J。W.,Seaman Jr,J。W.&Stamey,J。D.指定非信息先验的隐藏危险。66,77–84(2012).MathScinet Google Scholar Gelman,A。层次模型中方差参数的先前分布(Browne和Draper对文章的评论)。贝叶斯肛门。1,515–534(2006).MathScinet Math Google Scholar Lambert,P.C.,Sutton,A。J.,Burton,P.R.,Abrams,K。R.&Jones,D。R.含糊不清?对使用Winbugs在MCMC中使用模糊的先验分布的影响的仿真研究。Stat。Med。24,2401–2428(2005)。MathScinetGoogle Scholar Depaoli,S。在不同程度的类别分离的情况下,GMM中的混合类别恢复:频繁主义者与贝叶斯的估计。Psychol。方法18,186–219(2013)。Google Scholar DePaoli,S。&Van de Schoot,R。贝叶斯统计中的透明度和复制:WAMBS-CHECKLIST。Psychol。方法22,240(2017)。本文提供了有关如何在使用贝叶斯统计数据估算模型时如何检查各个点的分步指南。统计建模模型检查中的贝叶斯模型检查和鲁棒性是一种用于评估统计模型准确性的方法。它涉及使用各种诊断工具来检查模型的潜在问题,例如偏见或过度拟合。贝叶斯模型检查是传统模型检查的扩展,将先前的信念纳入分析中。再次。贝叶斯模型检查的关键应用之一是检测先前数据冲突。贝叶斯模型检查近年来变得越来越重要,因为它能够提供对统计模型的更细微理解的能力。它允许研究人员量化数据中包含的信息量,并评估其结论的可靠性。一些研究人员为贝叶斯模型检查技术的发展做出了重大贡献,包括Nott等,Evans和Moshonov,Young and Pettit,Kass和Raftery,Bousquet,Veen和Stoel,以及Nott等。这些研究人员介绍了各种诊断工具和评估先前数据协议和冲突的标准。这会发生在同一数据集的先前信念和数据之间存在差异时。像埃文斯(Evans),莫索诺夫(Moshonov)和杨(Young)这样的研究人员已经开发了使用诸如后验预测分布等指标来量化这一冲突的方法。贝叶斯模型检查也已应用于贝叶斯模型中的可能性推断。像Gelman,Simpson和Betancourt这样的研究人员强调了理解表达先前信念的上下文的重要性。除了其方法论上的意义外,贝叶斯模型检查还在社会科学,医学和金融等领域还采用了实际应用。它可以通过确定统计模型的潜在问题来帮助研究人员和政策制定者做出更明智的决定。在此处给定文章,此处28,319–339(2013).MathScinet Math Google Scholar Rubin,D。B. Bayesian具有合理的频率计算,适用于应用的统计学家。ann。Stat。J.am。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。 Stat。 合作。 85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。Stat。合作。85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。85,398–409(1990)。这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。ifna(1991)。3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。ieee trans。模式肛门。马赫。Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。Intell。6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。J. Chem。物理。21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J.&Roweth,D。Hybrid Monte Carlo。物理。Lett。 J. am。 Stat。 合作。Lett。J.am。Stat。合作。b 195,216–222(1987)。&Wong,W。H.通过数据增强计算后验分布。82,528–540(1987)。 本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。 本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。 元建模,因果推理和社会科学(2017)。Gelman,A。 &Rubin,D。B. 使用多个序列从迭代模拟中推断。 Stat。 SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.82,528–540(1987)。本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。元建模,因果推理和社会科学(2017)。Gelman,A。&Rubin,D。B.使用多个序列从迭代模拟中推断。Stat。SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.SCI。7,457–511(1992)。一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.一般方法用于监测迭代模拟的收敛性。J. Comput。图。Stat。7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。马尔可夫链蒙特卡洛在实践中57,45-58(1996)。(2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。(2017)。关键参考包括Minka(2013),Hoffman等。(2015),Liang等。 Q.(2015),Liang等。Q.Q.新方法利用排序差异,折叠和本地化技术来增强\(\ hat {r} \)的准确性。此外,本综述强调了贝叶斯建模中变异推理方法的重要性,尤其是随机变体,这些变体是大型数据集或复杂模型的流行近似贝叶斯推理方法的基础。(2013),Kingma和BA(2014),Li等。 (2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2013),Kingma和BA(2014),Li等。(2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2008),Forte等。(2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。(2014)。用于回归分析中的稀疏信号。该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J.&Friston,K。J. Neuroimage(2005)。咨询。临床。Google Scholar Smith,M.,Pütz,B。,Auer,D。&Fahrmeir,L。Neuroimage(2003)中还讨论了通过空间贝叶斯变量选择评估大脑活动。Google Scholar此外,检查了Zhang,L。,Guindani,M.,Versace,F。&Vannucci,M。Neuroimage(2014)的时空非参数贝叶斯变量选择模型用于聚类相关时间课程。判断中信息处理的研究采用了各种方法,如Bolt等人的研究中所见,他们探讨了两种戒烟剂在联合使用的有效性,理由是J.Psychol。80,54–65,2012)。在类似的脉中,Billari等。基于贝叶斯范式内的专家评估(人口统计学51,1933–1954,2014)开发了随机人群预测模型。其他研究已经深入研究了暂时的生活变化及其对离婚时间的影响(Fallesen&Breen,人口统计学53,1377-1398,2016)。同时,Hansford等人。分析了美国律师将军在最高法院的政策领域的位置(Pres。螺柱。49,855–869,2019)。此外,研究重点是使用健康行为综合模型来预测限制“自由糖”消耗(Phipps等人,食欲150,104668,2020)。此外,研究还将贝叶斯统计数据引入了健康心理学,并强调了其在该领域的潜在好处(Depaoli等人,Health Psychol。修订版11,248–264,2017)。Psychol。Gen. 142,573–603,2013; Lee,M。D.,J。 数学。Gen. 142,573–603,2013; Lee,M。D.,J。数学。贝叶斯估计的应用已显示在各种情况下取代传统的t检验,包括认知建模和生态研究(Kruschke,J。Exp。Psychol。55,1-7,2011)。此外,层次结构的贝叶斯模型已在生态学中用于建模种群动态和推断环境参数(Royle&Dorazio,生态学的分层建模和推断)。通过包括Gimenez等人在内的各种研究人员的工作进一步开发了这种方法。(在标记人群中建模的人口统计过程中,3)和King等。(贝叶斯分析人群生态学)。研究还研究了贝叶斯方法在生态学中的使用,例如使用汉密尔顿蒙特卡洛(Monnahan等人,方法ECOL。Evol。8,339–348,2017)。贝叶斯对生态学的重要性的重要性已被埃里森(Elison)等研究人员(ecol。Lett。 7,509–520,2004)。 最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。 也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。 Soc。 系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。Lett。7,509–520,2004)。最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。Soc。系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。系列C 57,609–632,2008)。在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。- Dennis等。-McClintock等。总而言之,对判断中信息处理的研究以及贝叶斯统计在各个领域的应用,使人们对这些概念及其对决策和人口建模的影响有了更深入的了解。这些作品涵盖了种群建模的各个方面,包括贝叶斯估计,综合人群模型和遗传关联研究。关键论文包括: - King and Brooks(2008)关于贝叶斯对具有异质性和模型不确定性的封闭种群的估计。(2006)使用生态数据估计密度依赖性,过程噪声和观察误差。(2012)基于多阶段随机步行开发了一个一般的离散时间框架,用于动物运动。-Aeberhard等。(2018)对渔业科学的州空间模型进行了综述。其他值得注意的贡献包括: - Isaac等。(2020)讨论了大规模物种分布模型的数据集成。-McClintock等。(2020)提出了一种使用隐藏的马尔可夫模型来发现生态状态动力学的方法。- King(2014)审查了统计生态及其应用。- Andrieu等。(2010)引入了粒子马尔可夫链蒙特卡洛方法,用于复杂的种群建模。这些研究表明,从人口生存能力分析到遗传关联研究,在理解生态系统中采用的统计技术的多样性,强调了该领域数据整合和高级建模方法的重要性。提出一种利用转移学习以提高数据质量的方法。基因组学,统计和机器学习的交集在理解复杂的生物系统中变得越来越重要。最近的研究探索了多摩智数据集的整合,以发现对人类健康和疾病的新见解。由Argelaguet等人建立了整合多派数据集的框架,该框架采用贝叶斯方法来识别生物学过程的关键因素。该方法已应用于包括单细胞转录组学在内的各个领域,如Yau和Campbell的工作所示,他们使用贝叶斯统计学习来分析大型数据集。研究的另一个领域涉及在英国生物库中对跨树木结构的常规医疗数据进行遗传关联的分析。诸如Stuart和Satija的研究表明,将单细胞分析与基因组学相结合以揭示有关复杂生物系统的新信息的潜力。深层生成模型的发展也促进了单细胞转录组学的进步,如Lopez等人的工作所证明的那样,后者应用了深层生成模型来分析大型数据集。此外,与Wang等人一起,对单细胞转录组学中数据降解和转移学习的研究已显示出令人鼓舞的结果。最近的研究还强调了科学研究中可重复性和公平原则(可访问,可互操作和可重复使用)的重要性。这包括诸如癌症基因组图集和Dryad&Zenodo之类的举措,旨在促进开放研究实践。提出了功能性变分贝叶斯神经网络。机器学习技术(包括变异自动编码器)的应用也在理解复杂的生物系统方面变得越来越重要。正如Paszke等人的评论中所述,变化自动编码器为将基因组学和统计数据与深层生成模型的整合提供了有希望的方法。总体而言,多摩智数据集,机器学习技术和统计分析的进步的整合已经开辟了新的途径,以理解复杂的生物系统并揭示了对人类健康和疾病的新见解。概率建模的最新进展导致了几种将深度学习与贝叶斯推论相结合的技术的发展。该领域的一个关键概念是变异自动编码器(VAE),它通过将其映射到较低维度的空间中来了解输入数据的概率分布。Hinton等人引入的Beta-Vae框架将VAE限制为学习基本的视觉概念。研究人员还探索了贝叶斯方法在神经网络中的应用,例如高斯过程和周期性随机梯度MCMC。例如,尼尔在神经网络上的贝叶斯学习方面的工作突出了神经网络与高斯过程之间的联系。此外,已证明将深层合奏用于预测不确定性估计在各种任务中都是有效的。最近的预印象提出了新的新技术,包括功能变分贝叶斯神经网络和细心的神经过程。后者使用注意机制从输入数据中学习相关特征。res。另一项研究的重点是开发更可扩展和可解释的模型,例如标准化流量和周期性随机梯度MCMC。该领域在理解深度学习的理论基础上,包括神经网络与高斯过程之间的联系,也看到了重大进展。Mackay和Williams的作品为贝叶斯倒退网络提供了一个实用的框架,而Sun等人。总的来说,这些进步有助于我们理解概率建模及其在深度学习中的应用。Hoffman,M。D.&Gelman,A。 No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。 J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。Hoffman,M。D.&Gelman,A。No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. Mach。学习。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。Stat。Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。J.am。Stat。合作。93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。&Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. R. Stat。Soc。系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Google Scholar Ntzoufras,I。使用Winbugs Vol。698(Wiley,2011).Lunn,D。J.,Thomas,A.,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Spiegelhalter,D.,Thomas,A。,Best,N。&Lunn,D。OpenBugs用户手册版本3.2.3。OpenBugs(2014).Plummer,M。Jags:使用Gibbs采样的贝叶斯图形模型分析程序。proc。第三国际统计计算的国际研讨会124,1-10(2003)。Google Scholar Plummer,M。Rjags:使用MCMC的贝叶斯图形模型。r软件包版本,4(6)(2016).Salvatier,J.,Wiecki,T。V.&Fonnesbeck,C。使用Pymc3在Python中进行概率编程。peerj Comput。SCI。 2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。SCI。2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。2,E55(2016)。Google Scholar de Valpine,P。等。与模型的编程:编写敏捷的通用模型结构的统计算法。J. Comput。图。Stat.s 26, 403–413 (2017).MathSciNet Google Scholar Bayesian analysis software JASP version 0.14 available for computer use (2020) Lindgren F & Rue H used R-INLA for Bayesian spatial modeling in a Stats journal article (2015) Vanhatalo et al's GPstuff allowed Bayesian Gaussian process modeling with Machine Learning Res articles (2013) Blaxter gave research methods in他的2010年McGraw-Hill教育书《如何进行研究》 BetanCourt在Github上创建了一个原则上的贝叶斯工作流程,主张最佳实践(2020)Veen&Schoot使用了对英超联赛数据的后验预测检查,并在OSF(2020年)上发布了它,并在Kramer&Bosman(2020)Kramer&Bosman在Kramer&Bosman在Kramersship Sumpership Summerschool inter Smixship Summershood prosentie in Utrech Torne in utrecht in of to inty介绍(2019年),UTRECHINE(2019年)(2019年)(2019年)(2019年)(2019年)(2019年)(2019年) Acta Math匈牙利文章(1955)Lesaffre&Lawson在2012年Wiley Publication撰写了一种新的公理概率理论(1955年),Hoijtink等人使用了贝叶斯评估,用于认知诊断评估,发表在Psych Methods In In In Psych Methods Journal(2014)