量子计算和通信领域取得了突破性进展 [ 3 ],其灵感来源于 P. Shor [ 4 ] 提出的整数因式分解量子算法。20 世纪 90 年代初,量子逻辑运算实现方案的理论提出与物质与场相互作用领域的进展相结合,为量子信息论奠定了基础,使得该学科目前成为一个独立的、最为突出的研究领域。除了通过实验建立了量子信息处理的原理证明 [ 1 – 3 ] 之外,量子力学的基础 [ 1 , 2 , 5 ] 也受益于理论与实验的对话,这种对话涉及物质与场相互作用物理、核磁共振、冷原子和固体物理等多个领域。除了量子量子比特和算法所带来的计算增益之外,本研究的目标是在物质-场相互作用领域,研究通过加强迄今已实现的物质-场耦合来进一步增加这种增益的可能性。这种加强将导致物质和场之间激发交换的时间更短,从而导致量子信息处理的时间更短。为了实现它,我们转向 20 世纪 90 年代后期发生的另一项重大进展:PT 对称哈密顿量的量子力学 [ 6 , 7 ] 。与量子信息领域的情况类似,伪厄米量子力学目前是一个独立的研究领域,得益于强大的活动和有趣的结果 [ 8 ] 。我们注意到,实现比厄米量子力学更快的可能性早在参考文献 [ 9 ] 中就有所设想。接下来面临的挑战是量子最速降线问题:寻找一个哈密顿量,它能够在最短的时间间隔 τ 内控制从给定初态到给定终态的演化。作者得出结论,对于厄米哈密顿量,τ 有一个非零的下界,而对于伪厄米哈密顿量,它可以任意小。然而,与这一非凡结论相反的是,后来发现 [ 10 ],[ 9 ] 中提出的方法存在不一致性,这实际上阻碍了它实现比厄米更快的演化。我们在此提出的协议是一种通过伪厄米相互作用加强原子-场耦合来实现比厄米更快演化的替代方法。此外,加强原子-场耦合在量子光学中有着广泛的实际应用 [ 11 ]。
1 光的连续变量量子理论 3 1.1 量子谐振子..................................................................................................................................................................4 1.1.1 哈密顿量的量子化..................................................................................................................................................................4 1.1.2 海森堡不确定性原理和算子归一化.................................................. 5 1.2 光的模态表示..................................................................................................................................................................................6 1.2.1 经典光.................................................................................................................................................................................. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.1 具有连续变量的图状态的理论框架 . ...
我们考虑一种使用量子比特的量子计算模型,其中可以测量给定的一对量子态是处于单重态(总自旋为 0)还是三重态(总自旋为 1)。其物理动机是,只要哈密顿量中的所有项都是 SU (2) 不变的,我们就可以以一种不会泄露其他信息的方式进行这些测量。我们推测这个模型等价于 BQP。为了实现这一目标,我们证明了:(1)如果补充单量子比特 X 和 Z 门,该模型能够以多对数开销进行通用量子计算。(2)在没有任何额外门的情况下,它至少与 Jordan 的弱“置换量子计算”模型一样强大 [ 14 , 18 ]。(3)通过后选择,该模型等价于 PostBQP。不完美的物理门是构建可扩展量子计算机的主要挑战。克服这一挑战的一种可能方法是使用纠错码从低保真度物理门构建高保真度逻辑门 [10]。另一种方法是使用拓扑有序状态来存储和操纵量子信息,直接获得良好的逻辑门 [17]。在这里,我们提出了第三种方法,通过物理哈密顿量的对称性保护操作。特别地,我们考虑在量子自旋中编码的量子位,并且我们假设哈密顿量和任何噪声项都遵循同时作用于所有量子位的 SU (2) 对称性。我们需要快速介绍一下 SU (2) 的表示理论。SU (2) 的不可约表示由一个量 S ∈{0, 1 / 2, 1, 3 / 2, ... } 来索引,称为自旋。自旋 S 的表示维数为 2 S + 1 。自旋 1 / 2 的表示维数为
描述和实现“非常规”的超导性仍然是量子多体物理学的最前沿挑战。在这里,我们使用统一的映射,并结合了有吸引力的Hubbard模型的完善性质,以严格证明具有低温配对密度波(PDW)相的哈密顿量。我们还表明,当应用于排斥哈伯德模型的广泛接受特性时,相同的映射会导致汉密尔顿表现出三胞胎D-Wave PDW超导性和非寻常的组合,而铁曲和抗毒素和抗毒素磁性自旋相关。然后,我们证明了D -Wave PDW的持续性,该pdw在大u上限制中从扩展T -J模型的映射中得出的哈密顿量。此外,通过对最近邻居的旋转电子迹象的策略操纵,我们说明了另一个力量的PDW超导性的可实现性。此处指出的不同磁性和外来配对相关性的交织可能与UTE 2(例如UTE 2)候选者的实验观察有联系。
量子退火器是量子计算的替代方法,它利用绝热定理有效地找到了可实现的哈密顿量的基态。此类设备当前可商购,并已成功应用于多个组合和离散优化问题。然而,由于难以将分子系统映射到伊辛模型汉密尔 - 汉密斯尼亚人,因此将量子试剂应用于化学问题仍然是一个相对稀疏的研究领域。在本文中,我们回顾了使用基于ISING模型的量子退火器找到分子哈密顿量的基础状态的两种不同的方法。另外,我们通过计算H + 3和H 2 O分子的结合能,键长和键角并映射其势能曲线的相对有效性。我们还通过确定使用各种参数值模拟每个分子所需的量子数和计算时间来评估每种方法的资源要求。虽然这些方法中的每一种都能够准确预测小分子的基态特性,但我们发现它们仍然超过现代经典算法的表现,并且资源需求的扩展仍然是一个挑战。
二维(2D)材料,例如,由自组装的分子单层或通过单层范围材料的单层形成,可以与光子纳米腔有效地融合,并有可能达到强耦合方案。耦合可以使用经典的谐波振荡器模型或空腔量子电动力学哈密顿量,这些模型通常忽略单层内的直接偶极 - 偶极相互作用。在这里,我们对系统的全哈密顿量进行对角,包括这些直接的偶极偶极相互作用。对典型2D系统的光学特性的主要影响只是将单层的明亮集体激发的有效能量重新归一致,并将其与纳米光子模式相结合。另一方面,我们表明,对于极端场合的情况,大型过渡偶极矩和低损失,完全包括直接偶极 - 偶极相互作用,对于正确捕获光学响应至关重要,许多集体状态都参与其中。为了量化此结果,我们提出了一个简单的方程式,该方程式指示直接相互作用强烈修改光学响应的条件。
新兴量子模拟器的关键应用之一是效仿多体系统的基础状态,因为它对从浓缩物理学到材料科学的各种领域都引起了极大的兴趣。的传统被提议慢慢地进化为以其基础状态初始化的简单的哈密顿量,以使人们的利益状态成为所需的基础状态。最近,在量子模拟器中还提出了变异方法,以模拟多体系统的基础状态。在这里,我们首先提供了绝热和变量方法与数字量子模拟器上所需的Quantum资源之间的定量比较,即电路的深度和两倍量子量子门的数字。我们的结果表明,对于这些资源,各变化方法的要求较小。但是,它们需要与经典优化杂交,该优化可以缓慢收敛。因此,作为论文的第二个结果,我们提供了两种不同的方法,可以通过对变异电路的参数进行良好的初始猜测来加速经典优化器的收敛性。我们表明,这些方法适用于广泛的哈密顿量,并在优化过程中提供了显着的改进。
非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
光子平台在均衡(P),时间反转(T)和二元性(D)下不变,可以支持类似于具有保守自旋的时间反向不变Z 2电子系统中的拓扑阶段。在这里,我们证明了基本的旋转阶段对非省力效应的弹性,尤其是物质耗散。我们确定非热,pd -Ampricric和相互光子绝缘子属于两个拓扑上不同的类别。我们的分析侧重于PD-对称和相互平行的板波导(PPW)的拓扑。我们发现标记拓扑相变的板中的临界损失水平。发现PT D-对称系统的哈密顿量由具有公共带隙的凯恩 - 梅勒型哈密顿量的无限直接总和组成。这种结构导致波导的拓扑充电是由于粒子孔对称性而导致的整数不良总和。该系列的每个组件对应于自旋极化边缘状态。我们的发现提出了拓扑光子系统的独特实例,该实例可以在其带隙中容纳有限数量的边缘状态。