量子计算和通信领域取得了突破性进展 [ 3 ],其灵感来源于 P. Shor [ 4 ] 提出的整数因式分解量子算法。20 世纪 90 年代初,量子逻辑运算实现方案的理论提出与物质与场相互作用领域的进展相结合,为量子信息论奠定了基础,使得该学科目前成为一个独立的、最为突出的研究领域。除了通过实验建立了量子信息处理的原理证明 [ 1 – 3 ] 之外,量子力学的基础 [ 1 , 2 , 5 ] 也受益于理论与实验的对话,这种对话涉及物质与场相互作用物理、核磁共振、冷原子和固体物理等多个领域。除了量子量子比特和算法所带来的计算增益之外,本研究的目标是在物质-场相互作用领域,研究通过加强迄今已实现的物质-场耦合来进一步增加这种增益的可能性。这种加强将导致物质和场之间激发交换的时间更短,从而导致量子信息处理的时间更短。为了实现它,我们转向 20 世纪 90 年代后期发生的另一项重大进展:PT 对称哈密顿量的量子力学 [ 6 , 7 ] 。与量子信息领域的情况类似,伪厄米量子力学目前是一个独立的研究领域,得益于强大的活动和有趣的结果 [ 8 ] 。我们注意到,实现比厄米量子力学更快的可能性早在参考文献 [ 9 ] 中就有所设想。接下来面临的挑战是量子最速降线问题:寻找一个哈密顿量,它能够在最短的时间间隔 τ 内控制从给定初态到给定终态的演化。作者得出结论,对于厄米哈密顿量,τ 有一个非零的下界,而对于伪厄米哈密顿量,它可以任意小。然而,与这一非凡结论相反的是,后来发现 [ 10 ],[ 9 ] 中提出的方法存在不一致性,这实际上阻碍了它实现比厄米更快的演化。我们在此提出的协议是一种通过伪厄米相互作用加强原子-场耦合来实现比厄米更快演化的替代方法。此外,加强原子-场耦合在量子光学中有着广泛的实际应用 [ 11 ]。
主要关键词