·– )的产生受 SOD2 控制,而 SOD2 活性产生的过氧化氢(H 2 O 2 )和过氧亚硝酸盐(ONOO – )主要由人类精子中的 PRDX 清除。PRDX 调节精子运动和获能所必需的氧化还原信号,尤其是通过 PRDX6。这种酶是抵御氧化应激的第一道防线,通过其过氧化物酶活性清除 H 2 O 2 和 ONOO – 并通过其钙独立的磷脂酶 A 2 活性修复氧化膜,从而防止脂质过氧化和 DNA 氧化。抗氧化疗法在治疗不孕症方面的成功取决于正确诊断是否存在氧化应激以及产生了哪种类型的 ROS。因此,更多关于氧化应激影响的分子机制的研究、开发新的诊断工具来识别患有氧化应激的不育患者以及随机对照试验对于制定个性化的抗氧化疗法以恢复男性生育能力至关重要。复制 (2022) 164 F67–F78
皮质回路的许多解剖和生理特征,从突触的生物物理特性到不同神经元类型之间的连接模式,都表现出从感觉区域到联想区域的层级轴的一致变化。值得注意的是,静息状态下神经活动的时间相关性尺度(称为内在时间尺度)在灵长类动物和啮齿动物中都沿着这一层级系统地增加,类似于空间受体场的规模和复杂性不断增加。然而,任务相关活动的时间尺度如何在大脑区域间变化,以及它们的层级组织是否在不同哺乳动物物种中一致出现仍未得到探索。在这里,我们表明,内在时间尺度和任务相关活动的时间尺度在猴子、大鼠和小鼠的皮质中都遵循类似的层级梯度。我们还发现,这些时间尺度在皮层和基底神经节中以类似的方式共同变化,而丘脑活动的时间尺度比皮层时间尺度短,并且不符合其皮层投影预测的层次顺序。这些结果表明,皮层时间尺度的层次梯度可能是哺乳动物大脑皮层内回路的普遍特征。
我们的项目是了解植入前小鼠胚胎中细胞谱系分化的遗传机制。我们对在小鼠中最初3天进行的层细胞(EPI)和原始内胚层细胞(PRE)之间的区分特别感兴趣,对应于人类的前6天。这些细胞将产生未来个体及其后代的所有细胞。此外,EPI是著名的ES多能干细胞的来源或类似于IPS重编程的细胞的来源。这些细胞具有提供任何胚胎或成人细胞类型的能力,因此具有巨大的细胞治疗潜力。我们的团队正在研究胚胎细胞中如何获得这些“多能”特性及其分化方式。我们还正在分析它们与前和滋养剂的相邻组织的关系,后来分别参与了蛋黄囊和胎盘的形成。
增强子或顺式调控元件可确保在发育过程中对基因表达进行精确的时空控制。该过程由转录因子 (TF) 和辅激活因子介导,它们将调控信息从增强子传递到其目标启动子,跨越的距离可能超过一兆碱基 1-4 。这种增强子-启动子 (E-P) 通讯被认为发生在所谓的拓扑相关结构域 (TAD) 内,拓扑相关结构域是通过黏连蛋白和 CCCTC 结合因子 (CTCF) 的环挤压过程形成的基因组基本组织单位 5-7 。TAD 或 TAD 内染色质相互作用的破坏可能导致基因表达或基因激活的错误下调,并可能导致人类疾病,这表明正确的 E-P 通讯对基因激活的重要性 8-10 。
微生物群与哺乳动物生理密切相关,对健康、生产力和生殖功能有重大影响。正常微生物群通过以下关键机制与宿主相互作用:充当抵御病原体的保护屏障、维持粘膜屏障完整性、协助营养代谢和调节免疫反应。因此,支持宿主的生长发育,并提供针对病原体和有毒物质的保护。微生物群显著影响大脑发育和行为,这已由受控实验室实验和人体临床研究的综合结果证明。这些前景表明,肠道微生物群通过肠脑轴影响神经发育过程、调节应激反应并影响认知功能。农场动物胃肠道中的微生物群将摄入的饲料分解并发酵成营养物质,用于生产肉和牛奶。在肠道微生物群的有益副产物中,短链脂肪酸 (SCFA) 因其在哺乳动物疾病预防和各种生产方面促进中的重要作用而特别值得注意。微生物群在哺乳动物的生殖激素系统中起着关键作用,可提高两性的生殖能力并促进母婴联系,从而成为维持哺乳动物生存的关键因素。微生物群是影响哺乳动物生殖成功率和生产特征的关键因素。均衡的微生物群可改善营养吸收和代谢效率,从而提高生长率、增加产奶量并增强整体健康状况。此外,它还能调节雌激素和孕酮等关键生殖激素,这些激素对于成功受孕和怀孕至关重要。了解肠道微生物群的作用可为优化育种和改善生产结果提供宝贵见解,促进农业和兽医学的发展。本研究强调了哺乳动物微生物群的关键生态作用,强调了它们对健康、生产力和生殖成功的必要贡献。通过整合人类和兽医的观点,它展示了微生物群落如何增强跨物种的免疫功能、代谢过程和激素调节,提供了有益于临床和农业进步的见解。
结果:在此概念证明中,我们将基因组剃须 - seq应用于小鼠胚胎干细胞和人类癌细胞,每实验产生并绘制数百至数千个SV。我们发现,通过CRE介导的对称LOXP位点产生SVS的细胞是迅速决定的,这可能是由于CRE和/或SVS本身的毒性所致。相比之下,在非对称attb/p位点,通过BXB1介导的重组产生SV的细胞是稳定的。这种稳定性使我们能够研究作用于不同类别BXB1诱导的SV的选择压力,并开始表征其功能后果。首先,我们发现带有较大缺失但没有反转的细胞是从增殖的细胞种群中预先损失的,这部分归因于不容忍中心粒损失。第二,我们观察到,尽管平衡的易位在体外耐受,不平衡的易位,尤其是那些敏感的易位,但迅速耗尽了。最后,通过在基因组洗牌细胞的瓶颈种群中共同合并转录组和盒式盒式条形码配对,我们证明我们可以确保特异性,诱导的SVS对基因表达的后果。
*通讯作者。ikaplow@cs.cmu.edu(i.m.k.); apfenning@cmu.edu(a.r.p.)。†这些作者为这项工作做出了同样的贡献。•目前的地址:美国马萨诸塞州剑桥市史丹利精神病学研究中心。§§地址:美国华盛顿州西雅图的艾伦脑科学研究所。¶刊登地址:美国马萨诸塞州剑桥大学的癌症计划。#Present地址:美国爱荷华州爱荷华州法学院,美国爱荷华州,美国。**动物联盟合作者和分支机构在本文的结尾列出。作者贡献:I.M.K.,A.J.L。和D.E.S.以姓氏为单位的顺序被列为联合第一作者,因为它们对手稿也同样贡献。概念化:I.M.K。和A.R.P.数据策划:I.M.K.,C.S.,B.N.P.,A.J.L.,W.K.M.,K.F。和D.P.G.正式分析:I.M.K.,D.E.S.,A.J.L.,C.S.,H.H.S.和B.N.P. 资金收购:A.R.P.,A.J.L.,B.N.P.,E.K.K.,D.P.G。和K.L.-T。调查:I.M.K.,A.J.L.,D.E.S.,C.S.,M.E.W.,H.H.S.,B.N.P.,K.P.,A.R.B。和A.R.P. 方法论开发:I.M.K.,A.J.L.,D.E.S.,C.S。和A.R.P. 监督:I.M.K.,A.R.P.,A.J.L.,M.E.W.,E.K.K。和K.L.-T。软件实施:D.E.S.,I.M.K.,A.J.L.,C.S.,H.H.S.,M.E.W.,W.K.M.,X.Z.和K.F. 可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P. 手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S. 手稿评论和编辑:所有作者。正式分析:I.M.K.,D.E.S.,A.J.L.,C.S.,H.H.S.和B.N.P.资金收购:A.R.P.,A.J.L.,B.N.P.,E.K.K.,D.P.G。和K.L.-T。调查:I.M.K.,A.J.L.,D.E.S.,C.S.,M.E.W.,H.H.S.,B.N.P.,K.P.,A.R.B。和A.R.P.方法论开发:I.M.K.,A.J.L.,D.E.S.,C.S。和A.R.P.监督:I.M.K.,A.R.P.,A.J.L.,M.E.W.,E.K.K。和K.L.-T。软件实施:D.E.S.,I.M.K.,A.J.L.,C.S.,H.H.S.,M.E.W.,W.K.M.,X.Z.和K.F.可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P. 手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S. 手稿评论和编辑:所有作者。可视化:I.M.K.,D.E.S.,C.S.,A.J.L.,H.H.S.和A.R.P.手稿准备:I.M.K.,D.E.S.,A.J.L.,A.R.P.,C.S。和H.H.S.手稿评论和编辑:所有作者。
关于牛奶微生物组的生存能力和功能的出色问题。牛奶微生物可以来自母体胃肠道,口腔,皮肤和乳腺微生物组,以及新生儿口服和皮肤微生物组。鉴于微生物来源的种类,随机过程强烈影响牛奶微生物组的组装,但牛奶微生物组似乎受到母性进化史,饮食,环境和牛奶营养的影响。牛奶微生物来定植新生儿肠道,并产生影响生理,代谢和免疫系统发育的基因和代谢产物。有限的流行病学数据表明,早期对牛奶微生物的暴露会导致积极的长期健康结果。可以通过饮食变化来改变牛奶微生物,包括为母亲提供益生菌和益生元。牛奶替代品(即婴儿配方)可能会受益于补充益生菌和益生元,但缺乏益生菌的有用性数据,并且补充应基于证据。总体而言,在人类和模型系统之外的牛奶微生物组文献很少。我们强调了模型物种与跨哺乳动物比较研究的机械研究的必要性,以进一步了解我们对哺乳动物牛奶微生物组进化的理解。对牛奶微生物组的一项更广泛的研究有可能为动物护理提供与现场濒危物种相关的信息。
基于转录的全细胞生物传感器(WCB)是由分析物1响应启动子设计的细胞,驱动记者基因的转录。WCB可以感知并报告与人类健康相关的生物活性分子(分析)。设计对分析物敏感的3启动子需要繁琐的试验方法,通常会导致生物传感器4的性能差。在这里,我们将合成生物学与控制工程集成到5个设计,计算模型,并在6个哺乳动物细胞中实现了高性能生物传感器。与传统方法不同,我们的方法不依赖于优化独立的7个视图组件,例如启动子和转录因子。相反,它使用生物分子8电路来增强生物传感器的性能,尽管固有的组件缺陷。我们通过采用CRISPR-CAS系统来仔细地实现了八个不同的生物传感器,然后进行了数量比较的性能,并确定了一种配置,我们将其命名为11个Casense,从而克服了当前生物传感器的局限性。我们的方法是可以推广的12,并且可以适应任何感兴趣的分析物,其中有一个对分析物敏感的13启动子,使其成为多种应用程序的多功能工具。作为概念证明,我们14培养了细胞内铜的高性能生物传感器,这是因为铜15在人类健康和疾病中发挥作用,并且缺乏能够测量细胞内16铜在活细胞中的技术。19我们工作的重要性在于它在体外和体内对17种监测生物活性分子和化学物质的监测的潜力,在18个地区,例如毒理学,药物发现,疾病诊断和治疗中至关重要。
团队使用的监测标签是高分辨率的行为记录标签,部署在南加州近海观测站 (SCORE) 的柯氏喙鲸 (Ziphius cavirostris) 和 ESA 列出的长须鲸 (Balaenoptera physalus) 身上。主要标签是 Wildlife Computers/Andrews Whale Lander 标签的新版本,称为 Lander2 标签。该标签包括 Fastloc GPS 和 3 轴加速计和磁力计(可以检测动物精细动作和方向的传感器)以及标准深度和温度传感器。所有传感器都位于一个更具流体动力学的封装内,预计可以保持连接更长时间。