•样本收集:根据赫尔辛基宣布和机构审查委员会(IRB)批准,收集新鲜的组织样本。•器官推导条件:基于器官的血清培养培养基,低O 2孵育,超低附着板(ULA)和Matrigel底物,具体取决于肿瘤类型。•功能性药物筛查:在384个井板中播种器官,在37 o C下孵育6天•6天•读数:通过ATP(细胞滴度发光)的生存能力•分析(Sengine App):使用15至1的新颖分数(SPM)对响应的内部分析进行了分析,并在响应中进行了分析,并分析了绝对分析和分析的响应和分析。pDTO被归类为敏感与抗性,对响应进行了排名:异常/良好/中等/低。
1882 年,埃利·梅契尼科夫 (Élie Metchnikoff) 在海星幼虫中发现了巨噬细胞,这种细胞通过吞噬外来物质来破坏外来物质。他将这一过程描述为吞噬作用 (Underhill 等人,2016)。后续研究表明,巨噬细胞在整个后生动物中都得到了保留,在调节发育、组织修复、体内平衡和先天免疫方面表现出额外的功能 (Lazarov 等人,2023;Park 等人,2022)。在三胚层动物中,吞噬细胞由于开放的循环系统而穿过体腔并清除细胞碎片或病原体 (Maheshwari,2022;Banerjee 等人,2019)。在哺乳动物中,常驻组织巨噬细胞在早期胚胎阶段从卵黄囊和红细胞-髓系前体细胞发育而来,并在整个生命过程中具有自我更新能力。单核细胞衍生的巨噬细胞也与快速补充的组织有关,例如肠道(Lazarov 等人,2023;Lee & Ginhoux,2022;Park 等人,2022)。在从单细胞生物进化到高度复杂的脊椎动物的过程中,巨噬细胞的作用和吞噬过程在很大程度上保持了下来(Yutin 等人,2009)。然而,吞噬巨噬细胞分化的潜在机制仍不清楚。
摘要 类器官技术彻底改变了生物医学研究,为研究人类发育生物学、疾病病理学和药物发现提供了一种变革性的方法。本综述综合了类器官研究的最新进展,强调了类器官复杂性、方法和应用方面的创新。我们讨论了类器官开发的最新技术,包括创建更复杂和更具代表性的组织模型的进展。本综述强调了类器官在疾病建模中的变革潜力,展示了它们复制复杂人类疾病状态的能力,并作为药物筛选和治疗测试的平台。此外,我们还探讨了类器官研究的新兴技术和未来方向,应对当前的挑战和进一步发展的机遇。通过整合最近的文献,本综述全面概述了类器官技术的最新进展及其彻底改变基础和应用生物医学研究的潜力。最近的进展包括解决缺氧诱导的细胞死亡和增强类器官内血管化的策略,从而改善了它们的生理相关性。关键词:类器官、疾病建模、药物发现、组织模型、药物筛选、治疗测试、新兴技术、缺氧诱导细胞死亡。国际卫生技术与创新杂志 (2024) 如何引用本文:Branham KS、Muddani SR、Saladula S、Parveen A。类器官技术的进步:创新、应用和未来方向。国际卫生技术与创新杂志。2024;3(3):50-53。Doi:10.60142/ijhti.v3i03.08 支持来源:无。
Each event (referral and evaluation) has a start and end trigger that mandates sequential data gathering (1 st referral event > 2 nd evaluation event > 3 rd Waitlist registration event) Data collection will start at a point in time (TBD by HRSA) for new referrals Do not allow transplant programs the ability to edit the data after event closure Target a quarterly data collection cycle with the option to submit the data in bulk或以预定义的间隔手动手动建议在下图中反映出批处理报告节奏,因为目前不需要实时推荐和评估数据来立即用于OPTN的操作目的。数据报告的节奏仍将促进所有正在考虑的用例,同时大大减轻与个体患者级别实时表格相关的数据负担。重要的是,随着信息的汇总而不是在事件之日严格可用,此节奏也更有可能产生更高质量的数据(例如推荐)。
OID技术研究宿主 - 寄生虫相互作用以剖析疾病机制。 所提供的PHD项目专门旨在剖析肠道上皮细胞分化的改变,重点是杯状细胞增生,并在感染肠道寄生虫贾第鞭毛虫duodenalis时,是全球公共卫生问题的肠道亲通道。 该项目由德国研究基金会(DFG)资助,并提供3年OID技术研究宿主 - 寄生虫相互作用以剖析疾病机制。所提供的PHD项目专门旨在剖析肠道上皮细胞分化的改变,重点是杯状细胞增生,并在感染肠道寄生虫贾第鞭毛虫duodenalis时,是全球公共卫生问题的肠道亲通道。该项目由德国研究基金会(DFG)资助,并提供3年
ARE,抗氧化反应元件;ATP,三磷酸腺苷;DNA,脱氧核糖核酸;FA,弗里德赖希共济失调;GAA,鸟嘌呤腺嘌呤腺嘌呤;ISC,铁硫簇;Keap1,Kelch 样 ECH 相关蛋白 1;Nrf2,核因子红细胞 2 相关因子 2;OXPHOS,氧化磷酸化;ROS,活性氧;SD,标准差。参考文献:1. 弗里德赖希共济失调研究联盟。什么是 FA?可从 https://www.curefa.org/understanding-fa/what-isfriedreichs-ataxia/ 获取。访问日期:2024 年 11 月。2. Koeppen AH。J Neurol Sci。2011;303(1-2):1-12。3. Campuzano V 等人。Hum Mol Genet。 1997;6(11):1771-1180。 4.Nachun D 等人。哈姆·摩尔·热内特。 2018;27(17):2965-2977。 5.弗里德赖希共济失调研究联盟。 Friedreich 共济失调临床管理指南 (FRDA)。可从 https://frdaguidelines.org/ 获取。访问时间:2024 年 11 月。 6. Campuzano V 等人。科学 。 1996;271(5254):1423-1427。 7.Gatchel JR 等人。纳特·热内特。 2005;6(10):743-755。 8. Bürk K. 小脑共济失调。 2017;4:4。 9.潘道夫·M·尼罗尔·吉内特。 2020;6(3):e415。 10. 汉森 E 等人。世界心脏病杂志。 2019;11(1):1-12。 11.Chiang S 等。神经化学国际公司。 2018;117:35-48。 12. González-Cabo P,帕劳 F. J Neurochem。 2013;126(补编1):53-64。 13. Llorens JV 等。神经科学前沿。 2019;13:75。 14. Petrillo S 等人。国际分子科学杂志。 2017;18(10):2173。 15.D'Oria V 等人。国际分子科学杂志。 2013;14(4):7853–7865。 16. Itoh K 等人,基因发育. 1999;13(1):76-86。17. Santos R 等人,抗氧化还原信号. 2010;13(5):651-690。
她的脖子和风管的前部插入管子,形成了一条呼吸道以帮助呼吸。当Assyifa'在2022年满2岁时,她进行了双开关操作,这是两个过程的过程,其中室和大动脉都被切换。手术由NUHCS司法诊所心脏手术部门负责人Kiraly教授领导,花了10多个小时以上。在第一个过程中,外科医生通过进行心房开关来纠正心脏的血液流动。该过程重塑了上腔的一部分,以帮助将贫血的血液引导到肺部,并像普通的心脏一样,将富含氧气的血液引向身体的其余部分。在下一个过程中,外科医生切换了大动脉的位置 - 主动脉和肺动脉。这涉及将主动脉与左心室和肺动脉重新连接到右心室,从而恢复正常的血液流向身体和肺部。由于阿西法(Assyifa)缺乏肺动脉,使用阀门的导管进行手术。助理教授Chen Ching套件是NUH的Khoo Teck Puat(Nuthersity Childris Medical Institute of Khoo Teck Puat)的小儿心脏病学高级顾问,他说,在过去的10年中,在新加坡进行的双开关操作少于10例。根据基拉利教授的说法,阿西法(Assyifa)是新加坡最年轻,最小的患者,可以接受该程序。为手术做准备,由于其心脏状况的复杂性而进行了广泛的计划,专门的调查和高级调查。NUHCS小儿心脏手术师委托人Senthil Kumar Subbian博士说,手术本身非常复杂,要求对Assyifa的心脏解剖结构进行准确而彻底的了解。“此过程中不可能有不确定性的余地,这就是为什么我们创建了3D打印模型的型号。
实验神经科学技术正在迅速发展,高密度电生理学和靶向电刺激方面取得了重大进展。结合这些技术,源自多能干细胞的皮质类器官有望成为大脑发育和功能的体外模型。尽管感觉输入对体内神经发育至关重要,但很少有研究探讨有意义的输入对体外神经培养物随时间的影响。在这项工作中,我们展示了脑类器官中目标导向学习的第一个例子。我们开发了一个闭环电生理学框架,将小鼠皮质类器官融入模拟动态任务(称为“Cartpole”的倒立摆问题)并通过高频训练信号评估学习。该框架支持的纵向实验阐明了选择训练信号的不同方法如何能够提高任务的效率。我们发现,对于大多数类器官,通过人工强化学习选择的训练信号比随机选择的训练信号或没有训练信号在任务上的表现更好。这种研究体外学习机制的系统方法为治疗干预和生物计算开辟了新的可能性。
对组织培养物,尤其是脑器官的分析需要复杂的整合和协调多种技术以监测和测量。我们已经开发了一个自动化的研究平台,可实现独立设备,以实现以反馈驱动的细胞培养研究的协作目标。我们的方法可以在各种感应和驱动设备之间的物联网(IoT)体系结构中进行连续,交流,非侵入性交互,从而确切地控制了体外生物学实验的时间。框架整合了微流体,电生理学和成像装置,以维持脑皮质器官,同时测量其神经元活性。类器官是用定制的3D打印室进行培养的,并固定在商业微电极阵列上。使用可授权的微流体泵实现周期性喂养。我们开发了一种计算机视觉量估计器,用作反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过一组为7天的小鼠大脑皮层器官进行了验证,比较了手动和自动化方案。在整个实验过程中维持鲁棒的神经活动时,对自动化方案进行了验证。自动化系统启用了7天研究的每小时电子生理记录。通过高频记录揭示了每个样本的中位神经单位射击率都会提高和器官射击率的动态模式。令人惊讶的是,进食不会影响率。此外,在录制过程中进行媒体交换表明对发射率没有急性影响,从而使该自动化平台用于试剂筛查研究。
1 Helmholtz AI,德国Helmholtz慕尼黑2肺健康与免疫学院(LHI),德国Helmholtz Munich,德国3号计算机科学系,德国慕尼黑技术大学