Daeil Jo 和 Yongjin (James) Kwon 工业工程,亚洲大学,韩国水原 电子邮件:j11129@naver.com,yk73@ajou.ac.kr 摘要 —随着公众对无人机兴趣的增加,无人机正在成为第四次工业革命时代的重要技术领域之一。对于无人机来说,固定翼类型是有利的,因为它比多旋翼类型具有更长的飞行时间,并且速度更快。然而,它需要一个单独的、漫长的、无障碍物的着陆区,这在城市地区很难找到。此外,固定翼型无人机不容易安全着陆。正因为如此,对垂直起降型无人机的需求正在上升。本研究的目的是设计和开发一种能够垂直着陆和起飞的垂直起降飞机,并在垂直、水平和过渡飞行过程中具有适当的推力和升力。我们制定了规范化的无人机开发流程,为开发过程提供理论指导。为了确定垂直起降飞机的气动特性,我们采用了 3D CAD 和 CAE 方法,可以模拟风洞试验以获得最佳气动效率。使用开发的流程,我们确定了构成无人机的内部模块的标准,并且可以考虑适当的重心来组装机身。我们进行了 SW 设置以进行飞行调整,并能够相应地进行飞行测试。在飞行体验中
使用可折叠成背包的飞行器进行长距离飞行或探索密集的城市环境。高价值传感器和强大的光学器件可为您提供强大而集成的数据采集解决方案。借助 Auterion 的端到端软件平台,轻松安排任务、保持现场态势感知、传输实时视频并确保飞行合规性。
本文介绍了在非参数不确定性(阵风和风扰动)下悬停飞行的垂直起降 (VTOL) 无人机 (UAV) 的滚转运动的最佳滑模控制 (SMC) 和最佳超扭转滑模控制 (STSMC) 的设计。本文对受控滚转运动进行了稳定性分析,并基于 Lyapunov 定理证明了渐近误差收敛。据此,针对受不确定性影响的飞机系统制定了控制律。为了避免在选择设计参数时进行反复试验并提高 SMC 和 STSMC 的性能,建议使用灰狼优化进行调整。基于数值模拟,对最佳和非最佳控制器以及最佳 SMSTC 和最佳 SMC 进行了比较研究,比较了跟踪误差和控制信号中的抖动行为。数值模拟表明,GWO 可以提高 SMC 和 STSMC 的性能。此外,在跟踪误差和控制信号抖动效应方面,最佳 STSMC 比最佳 SMC 具有更好的动态性能。
摘要 随着近年来嵌入式系统计算功率的增加,应用于多旋翼航空系统 (MAS) 的控制理论引起了人们的关注。这些系统现在能够以较低的传感器和执行器成本执行各种控制技术所需的计算。这些类型的控制算法应用于 MAS 的位置和姿态。本文简要概述并评估了多旋翼航空系统(特别是 VTOL - 垂直起降飞机)的流行控制算法。主要目标是提供统一且易于理解的分析,将 VTOL 车辆的经典模型和所研究的控制方法置于适当的环境中。从而为从事航空器的初学者提供基础。此外,这项工作还有助于全面分析非线性和线性反步、嵌套饱和和双曲有界控制器的实现。通过模拟和实验研究,选择并比较了这些技术以评估飞机的性能。
充电基础设施 虽然佛罗里达州有充足的电力供应,但并非所有潜在场地都具备满足 eVTOL 飞机电压和充电速率需求的必要基础设施。根据美国国家可再生能源实验室的数据,飞机电气化可能包括 820 千瓦时 (kWh) 的电池,这需要兆瓦级充电才能在不到 30 分钟的时间内完成充电。1 解决这一需求可能需要电缆和电池冷却以及航空电子设备的电磁屏蔽。根据 Black & Veatch 于 2019 年进行的 NIA-NASA 城市空中交通电力基础设施研究,城市空中交通 (UAM) 充电的典型机场电力基础设施要求包括一个 500 英尺长、170 英尺宽的混凝土垫块(用于电气元件)和至少三个 600kW eVTOL 汽车充电器。根据充电器的数量和电力需求,机场的公用设施配电系统可能需要升级,以减轻高峰充电期间设备过载的情况。另一个需要解决的问题是佛罗里达州独特的气候。Eve Air Mobility Systems 在《里约热内卢可持续城市空中交通运营概念》(2021 年 4 月)中指出:“全球某些城市的高湿度和盐度可能会缩短充电站及其安装和固定配件的使用寿命。”机场在为 eVTOL 飞机提供服务方面面临明显的挑战。无论如何,在
能够垂直起降的飞机(主要是直升机)帮助陆军执行各种任务,包括攻击、运输和侦察。目前执行这些任务的陆军直升机(如 AH-64 阿帕奇和 UH-60 黑鹰)正在老化,并经历了多次升级。陆军将其未来垂直升力 (FVL) 产品组合视为其最关键的现代化优先事项之一。它指出需要提高飞机能力,例如机动性、杀伤力和续航能力,以跟上潜在对手。在过去的 20 年里,陆军在收购过程中遇到问题后取消了开发新垂直升力能力的尝试。例如,我们之前报道过,科曼奇直升机在 2004 年因成本大幅增加和进度延误而被取消。1 随后,我们报告称,武装侦察直升机(科曼奇的后续项目)匆忙完成了规划过程,跳过了关键的系统工程步骤。最终确定武装侦察直升机的采购战略不可行,该项目于 2008 年终止。2
8:00 - 8:30 AM Wenlong Zhang (亚利桑那州立大学) 抗碰撞无人机 - 高逼真度模拟和精确控制研究 8:30 - 9:00 AM Jeffery Lusardi (美国陆军) 陆军垂直升力系统的飞行动力学、控制和自主性 9:00 - 9:30 AM Nate Isbell (SkyGrid) AAM 空域整合的作战概念 9:30 - 10:00 AM 10:00 - 10:30 AM Archit Krishna Kamath (新加坡南洋理工大学) 通过增强 eVTOL 飞机的容错能力和偏航控制
无人机最初是在军事领域使用无人机系统开发的,结合了航空航天技术与信息通信技术,具有多种用途,包括民用领域。为侦察领域而开发,在民用和警察领域都用于交通监控和高空侦察任务。它用于广播和监视,同时不断扩展到快递和救援任务领域。基于各种SW,传感器和飞行控制等航空技术的融合,以利用无人系统和信息通信技术,相关技术的商业化正在以非常多样化的方式发展。在本文中,我们提出并制造了VTOL无人机。设计过程参考了我们设计的 VTOL 开发过程,实际建造无人机也应用了相同的 VTOL 开发概念。为了了解飞机的空气动力学特性,我们应用了空气动力学设计理论,并使用了可以替代实际风洞试验的 CAE 方法。我们测试了组成无人机的内部模块的选择方法和标准,并且能够组装产品。对飞行控制计算机进行了 FW 编码以进行 VTOL 控制。此外,我们开发了用于长距离飞行的 LTE 通信模块,并与 GCS 一起进行了飞行实验,以从地面观察和响应飞行情况。飞行测试结果表明,在宽带下可以实现稳定的过渡飞行。我们可以看到,与我们的开发目标值相比,实际性能结果得到了满足。
执行摘要................................................................................................................................................ 4 1. 简介................................................................................................................................................... 9 2. 设计理念................................................................................................................................... 10 2.1 任务要求................................................................................................................................. 11 2.2 飞机配置权衡研究................................................................................................................. 11 2.2.1 串联设计评估.................................................................................................................... 12 2.2.2 倾转旋翼设计评估.................................................................................................................... 15 2.2.3 三旋翼设计评估.................................................................................................................... 17 2.3 权衡研究结论.................................................................................................................... 19 3. Wyver:设计亮点............................................................................................................................. 21 旋翼毂和动力叶片折叠.............................................................................................................
首先,我要感谢 Rogelio Lozano 教授邀请我加入墨西哥的 CINVESTAV-IPN / CNRS UMI3175 LAMFIA Cinvestav,没有他,这篇论文就不可能完成。他鼓励我继续研究一个非常创新的概念,并帮助我调查其可行性。我感谢他贡献的所有时间和想法。我非常感谢墨西哥政府在他的支持下为我提供的奖学金。此外,这篇论文受益于该实验室和 ISAE SUPAERO(法国图卢兹)在 Patrick Fabiani 博士的指导下进行的联合监督。我得到了无人机概念所依赖的两个科学领域的顶尖研究人员的建议和指导:航空学和控制系统。我非常感谢我的论文指导老师 Rogelio Lozano 教授、Moisés Bonilla Estrada 教授和 Patrick Fabiani 博士,感谢他们在这项研究中对我的科学跟进和提出的深刻见解。我还要感谢 Cinvestav 和 ISAE SUPAERO 的所有工作人员和同事在过去三年中给予我的帮助。我特别感谢在无人机演示器开发过程中提供的帮助以及允许我使用几台原型机。最后,我要向我的家人表示最深切的谢意,感谢他们在这段丰富而漫长的冒险中给予的不懈支持。我要特别感谢我的兄弟 Adrien Cabarbaye 在电子学、计算机科学和英语方面的支持。