摘要 我们利用聚合酶链式反应 (PCR) 从人类基因组 DNA 中扩增出长达 22 kb 的 3-珠蛋白基因簇,并从噬菌体 A DNA 中扩增出长达 42 kb 的 3-珠蛋白基因簇。我们还直接从重组 A 斑块中扩增出 91 个 9-23 kb 的人类基因组插入片段。为此,我们增加了 pH 值,添加了甘油和二甲基亚砜,减少了变性时间,增加了延伸时间,并使用了具有 3'-至-5'-外切酶或“校对”活性的次级热稳定 DNA 聚合酶。我们的“长 PCR”方案通过使用较低水平的聚合酶和温度和盐条件进行特定引物退火,保持了基因组 DNA 中目标所需的特异性。扩增10-40 kb DNA序列的能力将为基因组图谱和测序带来PCR的速度和简便性,并促进分子遗传学研究。
组蛋白是基本的核蛋白,负责真核生物中染色体纤维的核小体结构。核小体由大约146 bp的DNA包裹在组蛋白八聚体周围,该组蛋白八聚体由四个核心组蛋白(H2A,H2B,H3和H4)组成。通过接头组蛋白H1与核小体之间的DNA的相互作用进一步压实染色质纤维,以形成高阶染色质结构。该基因是无固有的,并且编码是组蛋白H3家族成员的复制依赖性组蛋白。该基因的转录本缺乏Polya尾巴;取而代之的是,它们包含一个终止终止元素。 该基因与6p22-p21.3染色体基因簇中的其他H3基因分开。该基因的转录本缺乏Polya尾巴;取而代之的是,它们包含一个终止终止元素。该基因与6p22-p21.3染色体基因簇中的其他H3基因分开。
大肠杆菌是人体肠道正常菌群的一部分,具有重要功能;然而,某些菌株会导致宿主患病,损害肠道功能并对整体健康产生不利影响。大肠杆菌 B2 血清群中的 pks 基因簇编码大肠杆菌素,这是一种次级代谢物和潜在的肠道毒素。然而,大肠杆菌中大肠杆菌素产生的机制很复杂,pks 基因簇的功能尚未完全了解。本综述探讨了大肠杆菌中 pks 岛产生大肠杆菌素的复杂机制和过程,阐明了其中 clbA-S 基因所起的具体作用。并揭示了colibactin对宿主细胞DNA的毒性作用,阐述了可能在诱导结直肠癌发展中起重要作用的机制,如单碱基替换(SBS)、小插入/缺失(small indel)特征(ID-pks)、染色体间连锁(ICLs)、DNA双链断裂(DSBs),这些机制的阐明对相关药物的进一步探索和开发具有重要意义。
摘要摘要:抗菌抗性基因(ARGS)和毒力因子(VFS)是围绕药物抗药性感染的全球健康危机的核心因素。Pathofact是2021年引入的生物信息学管道,从元基因组数据中提供了对ARGS,VFS和细菌毒素的见解。但是,生物信息学的最新进展突出了对Pathofact的更新版本的需求。我们引入了Pathofact 2.0,这是改进的ARG,VF和毒素预测的增强管道。关键更新包括用于VF识别的更新机器学习(ML)模型,用于毒素识别的新ML模型,扩展了隐藏的Markov模型配置文件以及用于预测生物合成基因簇的Antismash 7.0集成。这些升级使Pathofact 2.0成为预测基于微生物组的致病性和抵抗力的更强大,用户友好的平台,提供了一种至关重要的工具,以更好地理解和应对抗菌素抵抗和感染性疾病所带来的挑战。
摘要 :弧菌病和败血症是由细菌引起的感染,给水产养殖业带来了许多问题。海参等海洋生物被广泛认为含有具有抗菌潜力的共生微生物,因此生物勘探前景十分广阔。本研究旨在分析海参单疣刺参共生菌对嗜水气单胞菌和哈维氏弧菌的抗菌潜力并检测其NRPS基因。研究方法包括海参单疣刺参肠道共生菌的分离、抗菌活性筛选、16S rRNA鉴定和NRPS基因簇检测。共分离出16株细菌,其中12株分离株对病原菌嗜水气单胞菌有抑制潜力,7株分离株对病原菌哈维氏弧菌有抑制潜力。经16S rRNA鉴定,能够抑制A. hydrophila生长的共生菌为枯草芽孢杆菌(Bacillus subtilis),而能够抑制V. harveyi病原菌的共生菌为弯曲芽孢杆菌(Bacillus flexus),在枯草芽孢杆菌和弯曲芽孢杆菌中均检测到NRPS基因簇,扩增子大小约为250 bp。
p 09 SARP引导的二次代谢产物基因簇在放线菌的yvonnemast¹中;罗马Makitrynskyy; Juan-Pablo Gomez-Escribanoκ; Felix Gonther¹; Oletiemann²; wulfblankenfeldt²; TobiasMentzel³; Carlos Henrique Correa DosSantos⁴; LUDGERWESSJOHANN⁴队Leibniz Institute DSMZ-德国微生物收藏和Zellkulturen GmbH,Braunschweig/de; ²Braunschweig/ de的Helmholtz感染研究中心; ³BASF,Limburger Hof/de; ⁴莱布尼兹植物生物化学研究所,哈雷/de
多环芳烃 (PAH) 是威胁生态系统和人类健康的普遍污染物。在这里,我们分离并鉴定了一株新菌株 Hydrogenibacillus sp. N12,它是一种嗜热 PAH 降解菌。菌株 N12 在 60!C 以上利用萘作为唯一碳源和能量来源,并且还与许多其他 PAH 共同代谢。通过气相色谱-质谱 (GC-MS) 和稳定同位素分析在萘分解代谢中鉴定了代谢物。基于所鉴定的代谢物,我们提出了两种可能的代谢途径,一种是通过水杨酸,另一种是通过邻苯二甲酸。全基因组测序显示,菌株 N12 拥有一条 2.6 Mb 的小染色体。结合遗传和转录信息,我们揭示了萘降解的新基因簇。这些基因被命名为 nar AaAb,预计编码萘双加氧酶的 α 和 β 亚基,随后被亚克隆到大肠杆菌中,并通过全细胞转化检测酶活性。还表征了降解其他几种三环 PAH 的能力,表明除了萘降解基因簇外,菌株 N12 中还共存着其他组成性表达的酶系统。我们的研究为嗜热 PAH 降解剂在生物技术和环境管理应用中的潜力提供了见解。
basidiomycota是真菌的大型且多样的门。它们可以制造生物活性代谢产物,或者启发了抗生素和农业化学物质的合成。萜类化合物是该分类单元中遇到的最丰富的天然产品类别。已经描述了其他天然产物类别,包括聚酮化合物,肽和吲哚生物碱。基本菌真菌对天然产物的发现和研究已被妨碍了杂物因子,其中包括其缓慢的生长和复杂的基因组结构。基因组和代谢组研究工具的最新发展使研究人员可以更轻松地处理基本菌真菌的次级代谢组。廉价的长读全基因组测序可以使高质量的基因组组装,从而改善了可以预测天然产物基因簇的支架。基于CRISPR/CAS9的基于基础菌进行真菌的工程已被描述,并将在将天然产品与其遗传决定因素联系起来中起重要作用。已经开发了基因瘤基因和基因簇异源表达的平台,从而实现了自然产物生物合成研究。分子网络分析和公开可用的天然产品数据库有助于数据消除和自然产品表征。这些技术进步的结合促使人们从基质菌真菌发现自然产品发现的兴趣恢复了兴趣。
开发用于监测有机化学物质(农药,激素)以及水,土壤和空气中的抗菌耐药性细菌和病原体的电子生物传感器;开发基于生物体的生物传感器来检测水和土壤中的有机和无机污染;研究发达生物和设备的环境性能;对污染区域留下的生物的宏基因组学分析,以便能够搜索多个基因簇的各种功能(例如EFSA),以评估发达生物对自然环境的影响。基于生物体的生物传感器将组成能够检测的转基化学发光细菌
摘要:微生物技术在改进工业过程方面发挥着至关重要的作用,特别是在生产具有多种应用的化合物方面。在本研究中,我们使用生物信息学方法分析了链霉菌 MGMM6 的基因组结构,并确定了参与各种代谢途径的具有重大生物技术潜力的基因。基因组挖掘显示,MGMM6 由 6,932,303 bp 的线性染色体组成,G+C 含量高达 73.5%,缺乏任何质粒重叠群。在注释的基因中,预测有几个基因编码酶,例如染料过氧化物酶、芳香环开双加氧酶、多铜氧化酶、细胞色素 P450 单加氧酶和芳香环羟基化双加氧酶,这些酶负责生物降解多种内源性和外来污染物。此外,我们还鉴定了与重金属抗性相关的基因,例如砷、镉、汞、铬、碲、锑和铋,这表明 MGMM6 具有用于环境修复目的的潜力。对次生代谢物的分析表明,存在多个生物合成基因簇,这些基因簇负责产生具有强效抗菌和金属螯合活性的化合物。此外,在受控条件下进行的实验室测试表明,MGMM6 可有效抑制植物病原微生物,使废水中的芳香族三苯甲烷染料(尤其是 Blue Brilliant G250)脱色和降解,效果高达 98 ± 0.15%。总体而言,我们的研究结果凸显了 S. albidoflavus MGMM6 的生物技术潜力。