摘要:我们比较了欧洲和美国消费者对基因编辑 (GE) 苹果的态度和支付意愿 (WTP)。使用实验室中的虚拟选择和不同的技术信息,我们估计了 162 名法国消费者和 166 名美国消费者对新苹果的 WTP,这些苹果在切片或切开时不会变褐。信息主要集中在 (i) 拥有新苹果的社会和私人利益,以及 (ii) 可能带来这种新利益的技术(传统杂交种、GE 和转基因 (GMO))。法国消费者不重视创新,当创新是通过生物技术产生时,他们实际上会打折。美国消费者确实重视创新,只要它不是由生物技术产生的。在这两个国家,折扣幅度最大的是转基因苹果,其次是转基因苹果。此外,折扣是通过“抵制”不喜欢生物技术的消费者来实现的。然而,与法国消费者相比,美国消费者的折扣力度较小。对科学和新技术的积极态度完全抵消了对转基因苹果的折扣。关键词:基因编辑;转基因生物;杂交种;消费者信息;实验经济学;支付意愿。
关于基因编辑适用性的讨论主要基于两个领域:第一是应用于生殖细胞(如精子和卵子),即在细胞中进行的改变将在未来几代中传播;第二是应用于体细胞,即身体的其他细胞,其中基因编辑不会传递给后代。由此可以看出,人类胚胎的编辑处于一个充满紧张的领域,既在生物和健康领域,也在社会领域。从这个意义上说,对人类胚胎的操纵涉及一系列问题:个人、科学、社会、政治、家庭、法律和伦理。科学界内部的科学争议非常激烈,尤其是在关于基因校正与基因改良的讨论方面(Lander et al., 2019)。
摘要 神经节苷脂单唾液酸 (GM1) 神经节苷脂沉积症是一种罕见的常染色体隐性遗传病,通常由 GLB1 基因中的有害单核苷酸变异 (SNV) 引起。这些变异导致 b-半乳糖苷酶 (b-gal) 活性降低,从而导致与过早死亡相关的神经退行性病变。目前,尚无有效的 GM1 神经节苷脂沉积症治疗方法。正在进行的三项临床试验旨在提供 GLB1 基因的功能性拷贝以阻止疾病进展。在这项研究中,我们表明 41% 的 GLB1 致病 SNV 可以被腺嘌呤碱基编辑器 (ABE) 取代。我们的结果表明,ABE 可以有效地纠正患者来源的成纤维细胞中的致病等位基因,恢复 b-gal 活性的治疗水平。脱靶 DNA 分析未检测到接受治疗的患者细胞中的脱靶编辑活动,除了基于 3D 结构生物信息学预测的不影响 b-gal 活性的旁观者编辑。总之,我们的结果表明基因编辑可能是治疗 GM1 神经节苷脂沉积症的替代策略。
静默突变 – 突变不会改变多肽的氨基酸序列(这是因为某些密码子可能编码相同的氨基酸,因为遗传密码是退化的)错义突变 – 突变改变多肽链中的单个氨基酸(镰状细胞性贫血症是一种由单一替代突变改变序列中的单个氨基酸而引起的疾病)无义突变 – 突变产生过早的终止密码子(信号,让细胞停止将 mRNA 分子翻译成氨基酸序列),导致产生的多肽链不完整,从而影响最终的蛋白质结构和功能(囊性纤维化是一种由无义突变引起的疾病,尽管这并不总是唯一的原因)
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 21 日发布。;https://doi.org/10.1101/2025.01.21.634017 doi:bioRxiv preprint
基因治疗的前景首次出现在 20 世纪 70 年代[1],并在随后的二十年里进行了多次尝试。人们对这种方法的热情相当高,法国抗肌病协会 (AFM) 及其年度募捐活动在法国采取的行动进一步加强了这种热情。我几年前在专栏文章中报道过 [2] ( ➜ ),法国商界杂志《新媒体》在 1994 年预测,到 2010 年,基因治疗的市场规模将达到 500 亿美元。但事实上,当时基因治疗的市场规模几乎为零,所进行的试验均未产生真正确凿的结果,其中一项试验甚至导致 1999 年年轻志愿者杰夫·盖尔辛格 (Jeffe Gelsinger) 死亡。在随后的几年里,相关实验室一直致力于更好地理解引入携带治疗基因的载体时所涉及的细胞机制,改进这些载体及其给药方法,增加转移基因的表达,这些研究最终取得了一些真正的成功,特别是在治疗血友病方面 [3] ( ➜ )。
亨廷顿舞蹈症 (HD) 是一种常染色体显性神经退行性疾病,由亨廷顿蛋白 ( HTT ) 外显子 1 的 CAG 三核苷酸重复扩增引起。目前,HD 尚无治愈方法,HD 患者的临床治疗侧重于症状管理。之前,我们展示了使用 CRISPR-Cas9 通过靶向附近 ( < 10 kb) 的 SNP(在外显子 1 附近产生或消除原间隔区相邻基序 (PAM))来特异性删除扩增的 HTT 等位基因 ( mHTT )。在这里,我们使用 Oxford Nanopore 平台上的多重靶向长读测序方法,全面分析了 983 名 HD 个体中 HTT 外显子 1 两侧 10.4 kb 基因组区域内的所有潜在 PAM 位点。我们开发了计算工具(NanoBinner 和 NanoRepeat)来对数据进行解复用、检测重复并对扩增或野生型 HTT 等位基因上的读数进行分阶段。通过此分析,我们发现 30% 具有欧洲血统的 HD 患者共有一个 SNP,这被证实是人类 HD 细胞系中 mHTT 等位基因特异性删除的有力候选者。此外,多达 57% 的 HD 患者可能通过组合 SNP 靶向成为等位基因特异性编辑的候选者。总之,我们提供了受 HD 影响的个体中 HTT 外显子 1 周围区域的单倍型图。我们的工作流程可应用于其他重复扩增疾病,以促进用于等位基因特异性基因编辑的指导 RNA 的设计。
来自越来越多的植物物种的数据可以使用。基因组编辑工具又提供了准确的基因编辑的希望,为作物改善提供了新的机会。3在2023年,自创建第一个转基因植物以来已经有十三年了。这些植物最初是通过农杆菌促进的传统转型过程开发的。该方法现在已经采用了涉及锌指核酸酶和归巢核酸内切酶的技术。4-6 Talens(转录激活剂(如效应子核酸酶))后来成功引入了植物基因组编辑。7,8虽然早期序列特异性核酸酶(如转录激活剂样效应子(TAL效应子)核酸酶,锌指核酸酶和巨核)已证明
1。。我们正在使用基因编辑来生产具有最佳脂肪含量增加的高能量草。这些草旨在帮助牲畜农民增强牛奶和肉类的生产,同时还降低了甲烷排放量,潜在的可能性高达20%。反刍动物甲烷约占英国农业产生的温室气体排放总数的一半。
Camelina是Brassica家族的成员,也是既定的油料作物。骆驼种子油是营养的,适合饲料或食物;种子产品可用于陆生和水产养殖应用,以支持高价值生物基础的经济活动。最近,Camelina吸引了政策制定者和种植者的关注,因为它具有支持更具弹性和可持续的食品系统的能力。卡梅利娜(Camelina)具有吸引力,因为它具有对主要害虫(卷心菜茎跳蚤甲虫)的抵抗力,投入成本较低,并且在不可预测的生长条件下幸存下来。