11.使用注意事项 本产品设计为焊接安装。如果您想使用其他安装方法,例如使用导电粘合剂,请事先咨询我们。此外,如果反复受到温度循环或其他热应力,由于与安装基板的热膨胀系数不同,安装部分的焊料(焊锡圆角部分)可能会破裂。由于热应力而产生的裂纹受到安装的焊盘尺寸、焊料量和安装基板的散热的影响。当假设环境温度变化很大时,请仔细设计。
摘要:微通道热沉在从不同电子设备的小表面积上去除大量热流方面起着至关重要的作用。近年来,电子设备的快速发展要求这些热沉得到更大程度的改进。在这方面,选择合适的热沉基板材料至关重要。本文采用数值方法比较了三种硼基超高温陶瓷材料(ZrB 2 、TiB 2 和 HfB 2 )作为微通道热沉基板材料的效果。利用有限体积法分析了流体流动和传热。结果表明,对于任何材料,在 3.6MWm -2 时热源的最高温度不超过 355K。结果还表明,HfB 2 和 TiB 2 比 ZrB 2 更适合用作基板材料。通过在热源处施加 3.6 MWm -2 热通量,在具有基底材料 HfB 2 的散热器中获得的最大表面传热系数为 175.2 KWm -2 K -1。
柔性电子是指一类轻质、柔性和电子传感元件和电子设备,它们建立在可拉伸的基板上,可用于显示器和传感器等多种产品和应用。与用刚性材料制造的电子系统相比,它们最突出的特点是可以弯曲。印刷电子通常被认为是柔性电子的一部分。它指的是通过在不同的基板上打印来制造电子设备的印刷方法。所使用的技术随着时间的推移而不断发展,现在借助喷墨打印机,可以快速且廉价地打印电路。
• 设计路径必须显示性能优于基线模块,同时允许共同设计电气、热、机械和成本约束(而不是传统的线性设计工作流程)。• NREL 正在与 ORNL 和行业合作伙伴密切合作,以评估基于 WBG 的牵引逆变器的新封装材料和制造技术。o 杜邦公司的聚酰亚胺材料(Temprion 电绝缘膜)已以有机直接键合铜 (ODBC) 基板的形式进行评估,作为可在更高温度下工作的陶瓷基板的替代品。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
摘要 — 先进封装技术是实现更强芯片连接性的催化剂,而这种连接性正是人们对更强大的移动设备、平板电脑、物联网 (IoT) 和可穿戴设备永无止境的追求,这些设备功能更强大,功耗更低,电池寿命更长,但成本更低。先进封装的发展将 2.5D 和 3D 工艺融入生产领域,这给外包组装和测试 (OSAT) 设施和代工厂带来了额外的压力,迫使它们保持成本和生产效率,并凸显了从在圆形晶圆上制造先进封装转向矩形基板(例如面板级先进封装)的机会。从圆形晶圆迁移到矩形基板为 OSAT 提供了在每个基板上处理更多芯片的方法,从而提高了生产率和良率,同时降低了制造成本。
在设计用于宽带模拟和数字的包装时,例如在串行通信链路或测试和测量应用中使用的包装,必须格外小心,以确保通过芯片上的芯片维持信号保真度到芯片外互连路径。芯片,例如电子测试仪器中使用的串行收发器或放大器,可能具有从DC到10s GHz的操作带宽,并且通常将其集成到50 O系统中。在包装和印刷电路板(PCB)上设计受控的阻抗传输线,这是一个相对简单的物质。但是,这两个领域之间的连接变得更加复杂。片上受控信号路径通常通过电线键连接路由到芯片上受控的阻抗路径。电线键连接由一端连接到IC上的键垫的电线组成,并在另一端连接到包装基板上的传输线(或直接在芯片板应用中的PCB上)。由于这些线键是电线的薄环,从接地平面上循环,它们几乎总是对电路感应,在信号路径中显示出比更高的特征阻抗的一部分。图。1。此简化的图形在陶瓷包装基板上显示了一个腔化的IC。模具位于陶瓷基板形成的腔体内,并粘合到铜模板上。粘结线从芯片控制的阻抗传输线连接到包装基板上的传输线。芯片厚度和陶瓷底物的厚度大致相等,因此
摘要:集成能量收集器的片上微型超级电容器 (MSC) 对开发自供电无线传感器系统具有巨大潜力。然而,MSC 的传统制造技术与半导体制造技术不兼容,其中最显著的瓶颈是电极沉积技术。利用旋涂技术进行电极沉积已显示出在硅基板上提供多个互补金属氧化物半导体 (CMOS) 兼容 MSC 的潜力。然而,它们在基板上的电化学性能和产量有限一直是阻碍其后续集成的挑战。我们报告了一种简单的表面粗糙化技术,用于提高晶片产量和 CMOS 兼容 MSC 的电化学性能,特别是对于还原氧化石墨烯作为电极材料。在晶片基板上沉积并退火一层 4 纳米的铁层以增加表面粗糙度。与标准的非粗糙 MSC 相比,表面粗糙度的增加使电极厚度增加 78%,质量保持率提高 21%,旋涂电极的均匀性提高 57%,并且在 2 英寸硅基板上工作器件的产量高达 87%。此外,这些改进直接转化为更高的电容性能,并具有增强的速率能力、能量和功率密度。这项技术使我们更接近于在片上无线传感器电子设备的自供电系统中完全集成的 CMOS 兼容 MSC。