脊髓,表面上最不合理的研究可塑性的地方。结果,我花了近20年的时间在原始隔离方面工作。世界上可能有10个人关心我在做什么,也许没有人理解我为什么这样做。这很孤独,但和平 - 富有成效。因此,当丹尼斯·麦克法兰(Dennis McFarland)和我在1985年通过IBM的询问介绍了计算机如何访问大脑活动以恢复与严重神经肌肉障碍患者的沟通时,这是一个相当大的过渡。突然间,我正处于一个快速发展的领域,新同事不断地来自世界各地。实际上,这很有趣,尽管我确实担心很长时间以来会分散我的原始目的,但仍然是主要目的。,它向我介绍了许多工程师,他们被证明既有友善又非常有用。从2000年左右开始,我对神经系统可塑性的根本兴趣以及在BCI研发中的新参与开始合并。现在它们已完全合并;显然,BCI R&D是神经系统可塑性整体主题的一个独特方面,这是一个具有独特的科学和实践意义的方面。目前,我是国家适应性神经技术中心(NCAN)的主任,该中心是NIH资助的多机构中心,其中包括大约40位科学家,工程师,临床医生,博士后和学生。ncan创建神经技术,指导神经系统可塑性回答基本的科学问题并创建新的康复疗法,定义这种可塑性的机制,并将这些知识转化为临床使用,并提供培训和传播以使其他科学家,工程师和临床医生在科学和临床上开发和使用神经科学。
配对的联想刺激(PAS)通过使用与周围神经刺激配对的经颅磁刺激(TMS)促进运动皮层可塑性的希望。但是,PA的有效性通常受其短寿命增强作用的限制。最近的研究表明,呼吸节奏会影响皮质兴奋性,这表明一种潜在的方法来提高PAS功效。这项研究调查了与呼吸相跃迁同步PA的影响 - 具体来说,从灵感到有效期(I -E)的过渡以及到启发(E -I)对运动皮质可塑性的影响。我们对21-45岁的18岁健康志愿者(13名女性,5名男性)进行了实验,评估了由TMS应用于左运动皮层的TMS引起的运动诱发电位(MEP)。参与者进行了PAS会话,在I-E或E-I转变或随机间隔内交付了配对的刺激。MEP在基线,立即在PAS后以及刺激后10、20和30分钟记录。结果表明,在I-E转变处触发的PA显着增加了MEP振幅,在I-E和其他条件之间,PAS 20分钟后的MEP振幅显着差异。这突出了定时PA的好处,以增强运动皮质可塑性的I-E转变。这些发现强调了将呼吸节律整合到神经调节技术中以改善治疗结果的潜力。将PAS与自然呼吸阶段同步可以增强运动恢复策略,并为治疗干预提供了精致的方法。这种方法可能与中风康复特别相关,在这种康复中,增强运动皮质可塑性对于恢复至关重要。
摘要:本研究回顾了有关神经损伤患者的神经可塑性的当前文献及其与功能恢复的关系。神经塑性被认为是一种动态过程,中枢神经系统响应损害,经历和治疗干预而重组。基于神经塑性的治疗方法,包括物理疗法,职业治疗,非侵入性脑刺激和虚拟现实,已显示出有望促进具有不同病因和伤害神经病变的患者的功能恢复。考虑到患者的个体特征,定制治疗方案是为了优化治疗结果的基础。此外,卫生专业人员之间的多学科合作对于提供全面和整体护理至关重要。了解神经塑性的神经生物学机制和新的治疗技术的发展有可能彻底改变神经损伤的治疗,并显着改善患者的功能结果和生活质量。简而言之,这项研究强调了神经可塑性是一种在治疗神经损伤方面的新观点的重要性,并强调了对个性化治疗方法的需求,并基于可靠的科学证据。
本综述探讨了神经可塑性与脑损伤恢复之间的关系。由于脑损伤经常导致严重的损伤,神经可塑性的适应能力变得至关重要。我们首先描述神经可塑性的基本原理及其与康复的关系。研究不同形式的脑损伤及其神经学影响凸显了康复的复杂困难。通过揭示细胞过程,我们揭示了损伤后的突触适应性。我们对突触可塑性的研究深入探讨了轴突发芽、树突重塑和长期增强的平衡。这些过程描绘了变化中的神经弹性。然后,在损伤后,我们研究即时和缓慢的神经可塑性改变,将适应性重组与适应不良的重组区分开来。随着康复的进行,我们评估了利用神经可塑性潜力的技术。这些方法利用大脑的可塑性进行治疗,从虚拟现实和脑机接口到约束诱导运动疗法。探讨了伦理和个性化神经康复。我们仔细研究了联合治疗的前景以及将新知识应用于临床实践的困难。总之,本分析强调了神经可塑性在脑损伤恢复中的关键作用,为改善损伤后的生活提供了复杂的方法。
埃里克·努森的职业生涯一直致力于研究大脑如何处理信息、从经验中学习以及选择信息以引起注意。他早期的研究绘制了鸟类处理听觉空间信息和调节定向行为的神经通路。一项重大进展是他与加州理工学院的马克·科尼西 (Mark Konishi) 一起发现了仓鸮中脑听觉空间的地形图,该图是复杂的神经计算的结果。随后,他与斯坦福大学的同事展示了早期生活经历如何塑造创建此计算图的电路,确定了适应性可塑性的特定位置以及学习规则和机制,并发现了增加成年动物可塑性的方法。后来,他的研究转向控制选择性注意的机制。他与斯坦福大学的同事一起开发了量化鸟类空间注意力影响的行为范式,并建立了操纵前脑信号的方法,以类似注意力的方式调节感官信息。通过将计算方法与脑切片技术相结合,他展示了特定脑回路如何选择信息以进行认知决策,以及其他脑回路如何抑制分散注意力的信息。
在早期生活中承受压力可能会通过一种称为适应性可塑性的机制来改变动物的发育轨迹。例如,为了增强不利环境中的生殖成功,众所周知,动物在发育过程中加速了生长。但是,这些短期健身效益通常与寿命降低有关,这种现象称为增长率 - 寿命折衷。在人类中,早期生活压力暴露会损害生命后期的健康,并增加疾病的易感性。糖皮质激素(GC)是与这些过程有关的主要应力激素。本综述讨论了GC介导的自适应可塑性的证据,从而导致后来的同种异体超负荷。我们专注于GC诱导的对脑结构和功能的影响,包括神经发生。强调需要进行纵向研究;并讨论鉴定介导GC诱导的脑发育轨迹改变的分子机制的方法,导致成人功能障碍。进一步了解压力和GC暴露如何改变分子和细胞水平上的发育轨迹对于减轻整个生活过程中精神和身体不适的负担至关重要。
摘要。可塑性,癌细胞在没有基因组改变的分化状态之间过渡的能力已被认为是肿瘤内异质性的主要来源。它在癌症转移和耐药性中具有至关重要的作用。因此,靶向可塑性具有巨大的希望。然而,癌细胞中可塑性的分子机制仍然鲜为人知。几项研究发现,mRNA充当连接DNA和蛋白质遗传信息的桥梁,在将基因型转化为表型中具有重要作用。本综述概述了通过变化和编辑mRNA进行的调节癌细胞可塑性的调节。讨论了mRNA在癌细胞可塑性中的转录调节的作用,包括结合转录因子,DNA甲基化,组蛋白修饰和增强子。此外,辩论了mRNA编辑在癌细胞可塑性中的作用,包括mRNA剪接和mRNA修饰。此外,阐述了非编码(NC)RNA在癌症可塑性中的作用,包括microRNA,长基因间NCRNA和圆形RNA。最后,讨论了靶向癌细胞可塑性克服转移和癌症治疗性的不同策略。
在这篇综述中,我们关注产前阿片类药物暴露(POE),鉴于当前的阿片类药物危机,对受阿片类药物使用障碍(OUD)影响的儿童的心理健康成果引起了重大关注。我们重点介绍了临床前POE研究中突触可塑性和相关行为结果的发育年龄与性别之间的一些较少探索的相互作用。我们首先概述了有关海马相关行为和POE暴露范式可塑性的丰富文献。然后,我们讨论POE后有关奖励电路失调的最新工作。其他危险因素(例如早期生活压力(EL))可能会进一步影响POE的突触和行为结果。因此,我们包括有关使用临床前模型的概述,其中EL在关键的关键发展期间的暴露使成瘾和压力心理病理学的脆弱性赋予了很大的脆弱性。在这里,我们希望强调POE与ELS在阿片类药物诱导的可塑性的开发和维持方面的相似性,并改变阿片类药物相关的行为,在这些行为中可能发生相似的持久可塑性。我们以未来调查中应考虑的一些限制来结束审查。
摘要 - 增强学习(RL)已经证明了在空中机器人控制中的短期培训中保持政策可塑性的能力。但是,在非平稳环境中长期学习时,这些策略已显示出可塑性的丧失。例如,观察到标准近端策略优化(PPO)策略在长期培训环境中崩溃并导致重大控制绩效降级。为了解决这个问题,这项工作提出了一项成本吸引力的框架,该工作使用回顾性成本机制(ROCOM)与非固定环境平衡RL培训中的奖励和损失。使用奖励和损失之间的成本梯度关系,我们的框架动态更新了学习率,以在受干扰的风环境中积极训练控制政策。我们的实验结果表明,我们的框架在不同的风条件下学习了悬停任务的政策,而在可变的风条件下,与使用PPO的L2正则化相比,在可变风条件下的政策崩溃,休眠单位的休眠单位少11.29%。项目网站:https://aerialroboticsgroup.github.io/ rl-plasticity-project/
本综述探讨了神经可塑性与脑损伤恢复之间的关系。由于脑损伤经常导致严重的损伤,神经可塑性的适应能力变得至关重要。我们首先描述神经可塑性的基本原理及其与康复的关系。研究不同形式的脑损伤及其神经学影响凸显了康复的复杂困难。通过揭示细胞过程,我们揭示了损伤后的突触适应性。我们对突触可塑性的研究深入探讨了轴突发芽、树突重塑和长期增强的平衡。这些过程描绘了变化中的神经弹性。然后,在损伤后,我们研究即时和缓慢的神经可塑性改变,将适应性重组与适应不良的重组区分开来。随着康复的进行,我们评估了利用神经可塑性潜力的技术。这些方法利用大脑的可塑性进行治疗,从虚拟现实和脑机接口到约束诱导运动疗法。探讨了伦理和个性化神经康复。我们仔细研究了联合治疗的前景以及将新知识应用于临床实践的困难。总之,本分析强调了神经可塑性在脑损伤恢复中的关键作用,为改善损伤后的生活提供了复杂的方法。