● Cryostar 标准供货范围确保高安全性和可靠性 ● 所有传感器(温度、压力)均采用数字技术 ● 所有互连均根据要求提供不锈钢、蒙乃尔合金或铜 ● 所有压力阀均根据欧洲共同体的 PED 法规获得批准 ● 所有设备均安装在经过我们车间预测试的紧凑型滑橇上 ● 随时可连接到储罐(客户指定的储罐) ● 20 英寸容器设计用于泵(液体或气体填充滑橇)、汽化器和加热系统(如果需要) ● 40 英寸容器专用于填充架、电力和操作员操作控制区
法律信息 提及的所有商标均为 Huntsman Corporation 或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获得授权。本文所述产品(“产品”)的销售受 Huntsman Advanced Materials LLC 或其适当关联公司的一般销售条款和条件的约束,包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(“Huntsman”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中包含的信息和建议在出版之日是准确的,但本文所含内容不应被解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或特定用途适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。此处的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定应用的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方负责确定此类信息和建议的适用性以及任何产品是否适合其自身特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。请注意,产品可能因国家/地区而异。如有任何疑问,请联系您当地的亨斯迈代表。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确装运、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告可能处理或接触产品的员工、代理、直接和间接客户和承包商,并使其熟悉与产品有关的所有危害以及安全处理、使用、储存、运输和处置及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息,以及与产品的处理、使用、储存、分销、处置和接触有关的所有适用法律、法规和标准。
基本规范:控制盒灰色ABS 120 x 80 x 50 mm。电池类型PP3 9Volt。水箱填充时间0 - 35分钟(1秒步骤)。冲洗延迟0-99分钟(1分钟步骤)。轻型传感器自动选择。看门人的冲洗设置为每1、3、6、12、24或48小时在检测到最后一次运动后每1、3、6、12、24或48小时冲洗一次。齐平计数器检查发生了多少次冲洗,按下功能按钮,在第一个屏幕中按下并按下调整按钮3秒钟。
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。
摘要 近年来,电子行业的发展引入了多堆叠球栅阵列 (BGA),以满足消费者对高性能和小尺寸芯片封装日益增长的需求。本研究重点是对使用材料坝法的封装堆叠 (PoP) 底部填充工艺进行了初步研究。底部填充工艺考虑使用高粘度类型的底部填充材料。在当前的实验工作中,由于 L 路径分配方法具有优势,因此选择了该方法,如前文所述。材料坝法用于防止底部填充材料向后移动并从分配区域流出。材料坝建在 PoP 封装周围。根据循环时间和横向搭接分析了底部填充工艺的有效性,这两个因素是材料选择的重要因素。实验结果表明,缓慢的底部填充流动可能导致材料在分配工艺仍在进行时快速硬化。这种情况限制了底部填充流动并在 PoP 封装中产生空隙。材料坝法成功增强了第 3 层和第 4 层堆叠封装的底部填充工艺。本研究旨在提供堆叠PoP封装的初步底部填充工艺,为微电子行业的工程师提供参考。关键词:堆叠PoP封装、底部填充工艺、L路径分配法、材料坝法、球栅阵列。
1。CDC。 “为您的孩子获取HPV疫苗的6个理由。”可在https://www.cdc.gov/hpv/infopraphics/vacc-six-reasons.html上找到。 2018年5月21日访问。 2。 CDC。 “ HPV疫苗的新时间表。”可在https://www.cdc.gov/hpv/hcp/2-dose/clinician-faq.html上找到。 访问6-29-2018 3。 CDC。 “人乳头瘤病毒(HPV)。 问题和答案。”可在https://www.cdc.gov/hpv/parents/questions-answers.html上找到。 2018年5月21日访问。CDC。“为您的孩子获取HPV疫苗的6个理由。”可在https://www.cdc.gov/hpv/infopraphics/vacc-six-reasons.html上找到。2018年5月21日访问。2。CDC。 “ HPV疫苗的新时间表。”可在https://www.cdc.gov/hpv/hcp/2-dose/clinician-faq.html上找到。 访问6-29-2018 3。 CDC。 “人乳头瘤病毒(HPV)。 问题和答案。”可在https://www.cdc.gov/hpv/parents/questions-answers.html上找到。 2018年5月21日访问。CDC。“ HPV疫苗的新时间表。”可在https://www.cdc.gov/hpv/hcp/2-dose/clinician-faq.html上找到。访问6-29-2018 3。CDC。 “人乳头瘤病毒(HPV)。 问题和答案。”可在https://www.cdc.gov/hpv/parents/questions-answers.html上找到。 2018年5月21日访问。CDC。“人乳头瘤病毒(HPV)。问题和答案。”可在https://www.cdc.gov/hpv/parents/questions-answers.html上找到。2018年5月21日访问。
•绝大多数情况下,垃圾填充食物的温室气体排放来自垃圾填埋场的未受精甲烷排放。•收集(停止/启动收集卡车)和运输(收集卡车已满一旦使用的燃料)的排放相对较小,即使废物运输了200公里以上。•如果垃圾填埋场恢复能量,则可以抵消一些排放,如果它取代了化石燃料动力。收益将下降,因为越来越多的电网电源由低排放来源提供。•食物中的某些碳将在垃圾填埋场中保持“隔离”,但是与甲烷排放相比,这种偏移量很小。
最近,大型语言模型(LLMS)在传统的自然语言处理以外的领域取得了显着的成功,并且越来越有兴趣将LLMS应用于诸如代码生成,旅行计划和机器人控制之类的更一般性,但是这些模型仍然需要提高针对性的性能和特定领域或任务的概括能力。为了使Mod-Els更具体地了解各种任务,已提出提示学习将下游预测任务转换为语言模型任务。在提示学习方法中,大多数利用基于梯度的触发令牌搜索方法来自动上下文填充来完成任务。但是,这些方法并不总是提高LLM在完成任务时的准确性,尤其是在满足多种任务类型和不确定的输入句子时。触发令牌的选择通常缺乏特异性,从而导致模型性能。为了增强模型稳定性并生成更具针对性的触发令牌,我们通过平均梯度下降提出了上下文自动填充方法。与其他方法不同,我们的方法全面考虑了所有触发令牌与上下文之间的关系。提出的方法通过使用模型在所有触发令牌上的平均梯度选择一个令牌来选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择了一个令牌,从而选择了一个令牌,从而选择了一个令牌,从而选择一个令牌来选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而最大程度地利用模板的可能性函数来选择一个令牌。我们分别在SST-2和SICE-E数据集上进行了实验,分别进行了情感分析(SA)和自然语言推断(NLI)任务。实验结果表明,具有平均触发令牌梯度的上下文自动填充方法可产生更好的性能。
使用离散元法分析填充床热能存储中的热棘轮现象 填充床热能存储 (TES) 在能源技术中发挥着重要作用。在能量吸收过程中,热空气从上到下流过 TES 的内容物。在加热过程中,储热介质(散装材料)的膨胀会导致储热罐壁上的应力增加。这些发生的负载将通过离散模型来考虑。此外,有趣的是,在几个加载和卸载过程中负载如何变化(热棘轮现象)。在本文中,将研究如何使用 DEM 方法对这种行为进行建模。关键词:热能存储(TES)、离散元法(DEM)、热棘轮、热应力、校准 1. 引言 在 NEFI(工业新能源)项目过程中,应利用水泥厂约 300-400°C 的废热进行能量回收。为此,必须实施气流填充床热能存储 (TES) [10] 形式的存储。自 2018 年以来,维也纳技术大学工程设计和材料处理系 (KLFT) 与能源系统和热力学研究所 (IET) 合作开展项目,致力于实现这一目标。简而言之,填充床 TES 是装满散装材料的罐 [9]。散装材料用作储热介质。TES 系统最重要的目标是将热能的产生与其使用分离,因为可再生能源可以被邻近的公司使用。加热过程中,储热介质(块状材料)的膨胀会导致储热罐壁上的应力增加。先前的研究结果 [1]、[6]、[7]、[8] 表明,块状材料的接触力增加以及储热罐壁上相关应力的增加会导致损坏(见图 1)。
印尼市场上出售的聚合物基质复合屋面材料通常由 30%wt 短切毡玻璃纤维嵌入不饱和聚酯树脂中,并填充 30 PHR 碳酸钙。这项研究的目的是评估天然苎麻纤维是否有可能取代玻璃纤维。在研究的第一阶段,我们比较了印尼丰富的三种天然纤维:香蕉茎纤维、甘蔗渣和苎麻。结果表明苎麻纤维的性能最佳。其弯曲强度、弯曲模量和冲击韧性最高,分别为 191.57 MPa、6691 MPa 和 0.056 J/mm²。在第二阶段,我们生产了与商用屋面材料成分相同的复合材料样品,但用苎麻纤维代替了玻璃纤维。与不含苎麻纤维的材料相比,用苎麻纤维增强的复合材料的抗拉强度从 34.62 MPa 增加到 47.53 MPa,14 天内的最大吸水率从 1.145% 增加到 3.746%,声音传输等级从 23 dB 提高到 26 dB。此外,苎麻纤维对复合材料的密度没有显著影响。然而,加入苎麻纤维会导致弹性模量从 1630 MPa 降低到 1324 MPa,TGA 检测中的质量损失更高,为 86.95%,而 74.65% 则为 74.65%。苎麻纤维复合材料达到了 40 MPa 抗拉强度的最低屋顶要求,因此有可能取代玻璃纤维。