耐电弧性 IPC-650 2.5.1 秒 >180 秒 >180 弯曲强度 (MD) IPC-650 2.4.4 psi >23,000 N/mm 2 >159 弯曲强度 (CD) IPC-650 2.4.4 psi >19,000 N/mm 2 >131 剥离强度 (1 盎司 ED) IPC-650 2.4.8 磅/英寸 12 N/mm 2.1 热导率 ASTM F 433 W/M*K 0.19 W/M*K 0.19 热膨胀系数 (XY 轴) ASTM D 3386 (TMA) ppm/ ° C 21-23 ppm/ ° C 21-23 热膨胀系数 (Z 轴) ASTM D 3386 (TMA) ppm/ ° C 215 ppm/ ° C 215 可燃性等级UL 94 V-0 V-0
认为短切纤维增强 2.2 层压板确实是随机的,这种说法过于乐观,甚至可能具有误导性。目视观察 5 mil 短切纤维 2.2 层压板,其外观不均匀,有深色和浅色区域(图 A)。为了确定短切纤维增强材料的均匀性,使用了 X 射线荧光。玻璃纤维的化学成分主要是氧化硅 (SiO 2 ),其次是 CaO 2 、Al 2 O3、MgO 和 B 2 O 3 。XRF 对重元素的敏感度高于碳或氟。因此,使用 XRF 追踪明暗区域中重 Si 和 Ca 的相对成分。第一个观察结果是,暗区和明区具有不同的密度(未显示表面分析)。散射强度与轻元素和重元素的浓度成正比。需要进行更详细的分析,以获得有关两个区域之间密度差异的定量信息。众所周知,PTFE 的 Dk 取决于高温致密化过程中从 PTFE 复合材料中压缩出来的空气量。图 B 显示了浅色和深色区域的 XRF 散射强度重叠(亚表面体分析)。深色区域的硅含量是深色区域的 2.35 倍,钙含量是深色区域的 1.34 倍。氧化硅(二氧化硅)的 Dk 为 3.28,明显高于 PTFE 的 2.1 Dk。硅和钙的不均匀分布表明制造过程容易产生非均匀的介电材料。目前尚不清楚哪种材料更均匀 - 短切纤维或连续编织增强的 2.2 Dk PTFE 复合材料。但必须指出的是,短切纤维层压板上的浅色和深色区域的域尺寸非常大,肉眼可见,并且肯定与编织玻璃纤维 PTFE 层压板(TLY-5)相当。真正随机短切纤维增强层压板的 x、y 和 z CTE 值相等。具有不同 Si 和 Ca 浓度的浅色和深色区域的大区域尺寸表明,层压板内可能存在具有波动 CTE 值的不同区域。
处理:基于PTFE的材料比大多数其他刚性印刷布线板层较软,并且更容易受到处理损坏。仅带有铜箔的芯很容易折痕。 粘合到厚铝,黄铜或铜板上的材料更容易刮擦,凹坑和凹痕。 应遵循适当的处理程序。 1)处理面板时,戴上针织尼龙或其他非吸收材料的手套。 正常的皮肤油是略带酸性的,很容易腐蚀铜表面。 指纹很难去除,因为正常的亮光剂会溶解腐蚀,但是将腐蚀性油留在铜中,以使指纹在数小时后重新出现。 建议采用以下过程来去除指纹:a)稀释盐酸中明亮蘸酱。 b)在丙酮,甲基酮酮或氯化溶剂的蒸气中脱脂。 c)水冲洗并烘烤60分钟 @ 250°F(125°C)。 d)重复明亮的倾角。 2)保持工作表面清洁,干燥且完全没有碎屑。 3)通过剪切,锯,遮挡和打孔等初始过程将聚乙烯袋或片袋放在适当的位置。 4)仅通过两个边拾取面板。 薄骨头尤其缺乏通过一个边或角支撑自己所需的刚度,以这种方式处理它们可能会在尺寸上扭曲介电或赋予永久性折痕。 5)在加工过程中,应在工作站之间在平坦的托盘上运输核心,最好与柔软的无硫纸交织在一起。仅带有铜箔的芯很容易折痕。粘合到厚铝,黄铜或铜板上的材料更容易刮擦,凹坑和凹痕。应遵循适当的处理程序。1)处理面板时,戴上针织尼龙或其他非吸收材料的手套。正常的皮肤油是略带酸性的,很容易腐蚀铜表面。指纹很难去除,因为正常的亮光剂会溶解腐蚀,但是将腐蚀性油留在铜中,以使指纹在数小时后重新出现。建议采用以下过程来去除指纹:a)稀释盐酸中明亮蘸酱。b)在丙酮,甲基酮酮或氯化溶剂的蒸气中脱脂。c)水冲洗并烘烤60分钟 @ 250°F(125°C)。d)重复明亮的倾角。2)保持工作表面清洁,干燥且完全没有碎屑。3)通过剪切,锯,遮挡和打孔等初始过程将聚乙烯袋或片袋放在适当的位置。4)仅通过两个边拾取面板。薄骨头尤其缺乏通过一个边或角支撑自己所需的刚度,以这种方式处理它们可能会在尺寸上扭曲介电或赋予永久性折痕。5)在加工过程中,应在工作站之间在平坦的托盘上运输核心,最好与柔软的无硫纸交织在一起。垂直架,除非垂直架子被插入并提供足够的垂直支撑。
ESSN 1879-1050 出版商:Elsevier 注意:这是作者在《复合材料科学与技术》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,本作品可能已作出更改。最终版本随后发表在《复合材料科学与技术》[174] (2019) DOI:10.1016/j.compscitech.2019.02.010 © 2019,Elsevier。根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 许可 http://creativecommons.org/licenses/by-nc-nd/4.0/ 版权所有 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或付费。未经版权所有者书面许可,不得复制或大量引用本项目。未经版权所有者正式许可,不得以任何方式更改内容或以任何格式或媒介进行商业销售。本文档是作者的印刷后版本,包含同行评审过程中商定的任何修订。已发布版本和此版本之间可能仍存在一些差异,如果您想引用已发布版本,建议您参考已发布版本。
兹证明,S Vara Prasanth 提交的论文题为“层压复合材料扭曲板的非线性屈曲分析”,学号为212CE2045,部分满足了 Rourkela 国立技术学院土木工程系技术硕士学位授予的要求,是他在我的监督和指导下完成的真实工作。据我所知,论文中涉及的内容尚未提交给任何
本数据表中的信息旨在帮助您使用 Rogers 的电路材料层压板进行设计。它不旨在也不会产生任何明示或暗示的保证,包括适销性或针对特定用途的适用性的任何保证,或用户将为特定目的实现本数据表上显示的结果的保证。用户应确定 Rogers 的电路材料层压板是否适合每种应用。
高 I/O 密度和绿色材料是倒装芯片和 3D IC 封装用封装基板的两大主要驱动力。未来的有机层压基板将需要 5-25 µ m 的线宽和间距以及 50-100 µ m 的封装通孔 (TPV) 间距。这种超细间距要求将因电化学迁移和导电阳极丝 (CAF) 而导致严重的基板故障。因此,有必要开发新型无卤材料并研究其在超细间距应用中的可靠性。这项工作主要集中在四个领域:1) 先进的无卤材料,2) 细线宽和间距中的表面绝缘电阻 (SIR),3) 细间距 TPV 中的导电阳极丝 (CAF),以及 4) 倒装芯片互连可靠性。本研究选择的基板材料包括在聚合物主链上加入无卤阻燃剂的树脂配方。在具有 50 µm 间距铜线的基板上研究了 SIR,并在具有 150 µm 和 400 µm 间距 TPV 的基板上研究了 CAF。在这两项测试中,都观察到无卤基板与溴化 FR-4 相比表现出更好的电化学迁移阻力。通过对测试基板进行热循环测试 (TCT)、无偏高加速应力测试 (U-HAST) 和高温存储 (HTS) 测试来研究倒装芯片可靠性。在每次可靠性测试后都进行扫描声学显微镜 (C-SAM) 分析和电阻测量。测试基板分别通过了 200 小时的 HTS、96 小时的 HAST 和 2000 次 TCT 循环。倒装芯片可靠性结果表明,这些材料有可能取代传统的卤化基板用于高密度封装应用。关键词:无卤素基板、表面绝缘电阻、导电阳极丝、倒装芯片可靠性 简介 电子产品向无卤素材料的转变始于 1994 年德国通过的《二恶英法》。从那时起,欧盟 (EU) 制定的生态标签成为印刷线路板采用无卤素材料的驱动力。卤素通常添加到 PWB 中使用的聚合物玻璃复合材料中以达到阻燃效果。然而,卤素材料在特定的燃烧条件下会形成多溴二苯并二恶英 (PBDD) 和多溴二苯并呋喃 (PBDF),这会对环境和健康造成严重风险。在这方面,无卤材料比卤素材料优越得多,并且在回收过程中也很有用 [1]。印刷电路板研究所