在过去的几十年中,轻巧的复合材料的使用急剧增加。它们被广泛用于各种应用,包括航空航天,汽车,风力涡轮机叶片和许多其他应用。通常,这些复合材料暴露于轴向,弯曲,疲劳,撞击等各种载荷。在这些负载中,撞击负荷会对复合层压板造成严重损害,这可能证明是灾难性的。因此,当层压板损坏时,需要有一种有效的方法来修复这些损害。复合维修通常被视为繁琐的过程。因此,本文提出了一种新的维修技术来解决这个问题。本文着重于对受影响负载的复合层压板的研究,然后用各种切口形状代替受损区域,以促进修复后的负载转移,并在此过程中显着降低了抗压强度的损失。使用加热的真空树脂转移成型(HVARTM)方法制造了用环氧树脂的碳纤维复合层压板。将层压板承受低速撞击负荷。使用水喷射刀切割所产生的损坏区域,并用创新的切口形状代替。将修复后层压板的抗压强度与未受损和撞击受损的层压板进行了比较。
此数据表中的信息旨在帮助您使用Rogers的电路材料设计。它不是故意的,也不是为特定目的的适销性或适合性的任何明示或暗示的保证,或者用户将出于特定目的来实现此数据表中所显示的结果。用户应确定Rogers电路材料对每种应用的适用性。这些商品,技术和软件是根据出口管理法规从美国出口的。与禁止美国法律相反的转移。rt/duroid,帮助权力,保护,联系我们的世界和罗杰斯徽标是罗杰斯公司或其子公司之一的商标。©2022 Rogers Corporation,印刷在美国。保留所有权利。修订版1606 080822出版:#92-105
Povolo M.,MacCaferri E.,Cocchi D.,Brugo T.M.,Mazzocchetti L.,Giorgini L.等。(2021)。与橡胶纳米纤维交织的复合层压板的阻尼和机械行为。复合结构,272,1-8 [10.1016/j.compsctuct.2021.114228]。
ESSN 1879-1050 出版商:Elsevier 注意:这是作者在《复合材料科学与技术》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,本作品可能已作出更改。最终版本随后发表在《复合材料科学与技术》[174] (2019) DOI:10.1016/j.compscitech.2019.02.010 © 2019,Elsevier。根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 许可 http://creativecommons.org/licenses/by-nc-nd/4.0/ 版权所有 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或付费。未经版权所有者书面许可,不得复制或大量引用本项目。未经版权所有者正式许可,不得以任何方式更改内容或以任何格式或媒介进行商业销售。本文档是作者的印刷后版本,包含同行评审过程中商定的任何修订。已发布版本和此版本之间可能仍存在一些差异,如果您想引用已发布版本,建议您参考已发布版本。
摘要:本文介绍了一种在循环压缩载荷下获取碳纤维增强塑料 (CFRP) 平板冲击后损伤扩展的分析方法。基于引入的参考损伤模式 (RDM) 假设,给出了损伤增长寿命的解决方案。通过使用有限元分析 (FEA) 对裂纹驱动力与损伤大小的分析,可以确定获取损伤增长寿命的损伤临界大小。通过示例讨论和说明了损伤容限原理对包含冲击损伤的结构元件压缩-压缩循环载荷情况的适用性。使用引入的简化方法计算损伤增长寿命特征的结果表明,在复合材料结构中使用缓慢增长方法是可能的,但必须解决获得与所选裂纹驱动力测量有关的损伤增长率方程的精确参数的必要性。
在本文中,提出了由高模量碳纤维增强聚合物(CFRP)层压板增强的结构钢梁的剪切和弯曲行为。完全,在3分弯曲测试设置下测试了18个钢样本,包括6个不加强的梁作为对照样品和12个具有简单支撑的强化钢梁。使用键合系统加强所有标本。研究了不同参数的影响,包括钢梁的长度,样品的截面大小,CFRP层压板的数量以及CFRP层压板的位置。基于预期的故障模式,在张力法兰,压缩法兰和梁网的表面上实现了粘合的层压板。在测试的梁中观察到了弯曲,剪切和侧向屈曲失败的三种故障模式。这些实验的主要目标是评估负载能力,梁延展性和初始刚度的增强。结果表明,加强钢梁的产量载荷,最终负载能力和能量吸收分别提高了15%,29%和28%。最后,为了预测测试结果并比较实际和预测的阀门,进行了分析和数值研究。
双层 (DD) 系列层压板的特点是参数化层压板描述 [± 𝜑, ± 𝜓 ] 𝑟𝑇 。DD 为航空航天层压板带来了显著优势,因为层压板构建块架构的独特组合简化了制造过程,尤其是层压板优化。DD 消除了传统层压板中复杂的排列问题,通过局部改变重复次数 𝑟 ,可以轻松调整刚度。本文提出了一种针对层压板强度的 DD 层压板优化方案,该方案侧重于安全层压板识别的稳健性。该方案适用于多载荷场景,每个载荷由五个单独的载荷组成。将主应变包裹的荨麻圈失效与 DD 特征相结合,可以得到一个相当简单的优化方案,并附上有意义的说明,本文将对此进行介绍。
现在对常见的层压板类型(如正交层压板和准各向同性层压板)进行比较。图 1.2 显示了各种纤维、金属和复合材料的比强度与比模量的关系图。