从历史上看,新材料和异质结构推动了革命性的科学和技术变革,从用于节油飞机的碳复合材料,到用于现代计算的高纯度、精确掺杂半导体,再到用于固态激光器和关联量子霍尔物理的新型 III-V 异质结构。近年来,我们对材料分类的理解发生了革命性的变化。就像在拓扑学家看来,甜甜圈和咖啡杯“看起来一样”,因为它们都有一个孔(图 1),但它们看起来都不像没有孔的球一样,这些新材料的特点是其电子态的拓扑特性。拓扑材料中稳定存在的不寻常特性将为一系列技术应用带来新一代电子、传感器和光学元件。
自2001年以来的研究兴趣集中在硅(SIGE)异质结构和设备的外延生长和应用上。Over almost 20 years of activity, I had the chance to explore the wealth of possibilities offered by strain and bandgap engineering in SiGe heterostructures in a variety of application fields including: quantum transport in Ge quantum wells (QW), near- and mid- infrared integrated optics in SiGe waveguides and MQW modulators, thermoelectric generation in low-dimensional semiconductors, spintronics in Ge异质结构,在图案化底物上的外延生长,浓度掺杂的GE的等离激子效应以及基于GE的孔状态的Qubits的发展。总的来说,我的研究活动导致了国际期刊上280多个同行评审出版物的出版物(H-Index 40)。
基于半导体异质结构的 GaN 器件:两种半导体材料的分层序列,其特征是带隙不连续 通过在 GaN 衬底上沉积一层薄薄的 AlGaN 来形成异质结构。
最近,有报道称,通过采用新的器件架构,人们提出了几种提高MOTFT性能的策略,包括双栅极注入[28–30]、高k绝缘体[31–33]和半导体异质结构。[34–38]在这些策略中,不同MO的低维双层或多层异质结构提高了MOTFT中的载流子迁移率和驱动电流。[39,40]这些改进通常源于两个具有较大费米能差的半导体之间异质界面势阱内受限的自由电子。[41]然而,尽管这些方法值得关注,但可用组件材料和漏电流控制的局限性损害了该平台的保真度。[37,38]另一种提高性能的方法
我们研究单层Rydberg状态的直接和间接磁脱糖,以及在外部平行电和磁场中的Xenes(硅,德国烯和Stanene)的双层异质结构,垂直于单层和异质结构。我们通过使用Rytova-keldysh的数值整合来计算Rydberg States,1 S,2 S,2 S,3 S,3 S和4 S的结合能,用于直接磁铁电位的电位,用于直接磁铁的潜力,以及Rytova-keldysh和rytova-keldysh和coulombys的潜力。后者允许了解筛查在Xenes中的作用。在外部垂直电场中,Xene单层的屈曲结构导致sublatices之间的潜在差异,从而使电子和孔质量调整磁性能量和磁性能量,以及磁磁相连的同系数(DMCS)。我们报告了电力和磁场对结合能和DMC的能量贡献。通过电力和磁场直接和间接杂志的能量贡献的可调性。还表明,直接激子的DMC可以通过电场调节,并且可以通过电场调谐间接磁性脱位的DMC,并通过HBN层的数量来操纵。因此,可以通过外部电气和磁场以及HBN层的数量来控制电子设备设计的可能性。Xenes单层和异质结构中磁性excitons的结合能和DMC的计算是新颖的,可以将其与实验结果进行比较。
最近,有报道称,通过采用新的器件架构,人们提出了几种提高MOTFT性能的策略,包括双栅极注入[28–30]、高k绝缘体[31–33]和半导体异质结构。[34–38]在这些策略中,不同MO的低维双层或多层异质结构提高了MOTFT中的载流子迁移率和驱动电流。[39,40]这些改进通常源于两个具有较大费米能差的半导体之间异质界面势阱内受限的自由电子。[41]然而,尽管这些方法值得关注,但可用组件材料和漏电流控制的局限性损害了该平台的保真度。[37,38]另一种提高性能的方法
电催化剂,能够在分子水平上精确调节缺陷和可及的活性中心。有趣的是,异质结构体系通常比均匀结构体系表现出更高的催化活性,这归因于电极结构/组成和界面性质的协同效应。[17–21] 在此,我们展示了如何利用 SURMOF 异质结构生长的机会及其独特的变态来产生具有特殊形貌和微观结构的金属氧/羟基材料。在 0.1 m KOH 中 300 mV 的过电位下,我们测得的氧释放质量活性约为 2.90 kA g −1,优于基准贵金属和非贵金属电催化剂。据我们所知,这是报道的 NiFe 基电催化剂的最高质量活性。据报道,SURMOF 可产生对水氧化具有高活性的电催化剂,但 MOF 基催化体系的电化学稳定性或转化以及活性物质的来源仍然不清楚。[22,23] 最近的研究集中于阐明 MOF 基催化体系中的活性物质,并通过一系列先进的物理化学技术发现在电化学测试的 (SUR)MOF 催化剂中存在金属氢氧化物。[24–27] 因此,推测所述活性物质来源于碱性电解质中氧电催化过程中的 MOF 衍生的金属氢氧化物。尽管最近有一些努力致力于阐明催化物质,但对转化机制和结构-性能关系的深入了解仍然是开放的。在这项工作中,我们使用由去质子化的对苯二甲酸 ([TA] 2 − ) 连接体组成的异质结构 NiFe 基 SURMOF,并利用结构和成分的变化来优化 OER 性能。实验表明,异质结构 SURMOF 在碱浸和电化学测量过程中经历了特定的原位重构和自活化过程,从而产生金属氢氧化物和羟基氧化物以及有机连接体的部分浸出。我们建议使用 SURMOF 作为前体,以便访问催化剂制造的参数空间,这超出了现有的合成概念。
s1 -pp1:Marius Husanu; “ Al掺杂的SRTIO 3光催化剂,其性能提高”。s1 -pp2:mihaela botea; “批量分级(BA,SR)TIO 3结构具有增强的热稳定性”。s1 -pp3:liviu nedelcu; “ BA 1-X SR X TiO 3 /聚乙烯复合材料中的热漂移通过宽带介电光谱研究”。s1 -pp4:Oji Babatunde和Emmanuel Imoru; “使用稻壳灰的合成无形二氧化硅开发的基于mullite的陶瓷的形态和相检查”。s1 -pp5:Marius Cristian Cioangher; “用于成骨的应用的SR和GA掺杂的钛酸钡压电法”。s1 -pp6:mihaela bojan&cristian udrea; “用于土壤中重金属检测的Terahertz时域光谱”。S1 -PP7:Cristina Stefania Florica; “基于聚二苯胺和多壁碳纳米管的复合材料与羧酸基团在能量储存中的应用官能化”。 s1 -pp8:teodora burlanescu; “在过滤过程中使用的SERS支持和膜,含有用于应用的聚(乙烯基氯化物)的复合材料”。 S2 -pp1:Lucian Dragos Filip; “在多层异质结构中对绝缘体层在极化方向稳定性中的作用的研究”。 S2 -PP2:Liliana Marinela Balescu; “异质结构中铁电成分的Wurtzite III-V材料”。S1 -PP7:Cristina Stefania Florica; “基于聚二苯胺和多壁碳纳米管的复合材料与羧酸基团在能量储存中的应用官能化”。s1 -pp8:teodora burlanescu; “在过滤过程中使用的SERS支持和膜,含有用于应用的聚(乙烯基氯化物)的复合材料”。S2 -pp1:Lucian Dragos Filip; “在多层异质结构中对绝缘体层在极化方向稳定性中的作用的研究”。S2 -PP2:Liliana Marinela Balescu; “异质结构中铁电成分的Wurtzite III-V材料”。
eNSTORFER LAB FRITZ HABER学院Max Planck Society,德国的博士后研究员在2D材料和有机/无机异质结构上进行了飞秒电子衍射实验孕妇离开12.2020-06.2021-2021
mxene作为一种不同的储能系统的电极材料进行了研究。实验结果表明,MXENES作为阳极材料具有出色的循环性能,尤其是在较大的电流密度下。但是,可逆能力相对较低,这是满足工业应用需求的重要障碍。这项工作通过原位方法合成了N掺杂的石墨烯样碳(NGC)插入的Ti 3 C 2 t X(NGC-Ti 3 C 2 t X)van der waals异质结构通过原位方法。所制备的NGC-TI 3 C 2 T X van der waals异质结构用作钠离子和锂离子电池电极。对于钠离子电池,在20 mA g-1的特定电流中实现305 mAh g-1的可逆特异性容量,比Ti 3 C 2 t X X X X的特定电流高2.3倍。对于锂离子电池,在20 mA g-1的特定电流下,可逆能力为400 mAh g-1,是Ti 3 C 2 t X X的1.5倍。由NGC-TI 3 C 2 T X制成的钠离子和锂离子电池都显示出高循环稳定性。理论计算还验证了NGC-TI 3 C 2 O 2系统中电池容量的显着改善,这归因于NGC边缘状态下工作离子的附加吸附。这项工作是一种创新的方式,可以合成新的范德华异质结构,并提供了一条新的途径,以显着提高电化学性能。