糖尿病性心肌病(DCM)是糖尿病最严重的并发症之一,已被认为是一种心脏代谢疾病。在常规条件下,心跳加速所需的大多数ATP产生(> 95%)来自脂肪酸(FAS)和葡萄糖的线粒体氧化磷酸化,其余部分来自各种来源,包括果糖,包括果糖,乳酸,乳酸酮(Ketone Body)(Ketone Body(KB)和分支链型氨基酸(BCAA)(BCAA)。在动物模型和糖尿病患者的糖尿病心脏中观察到了葡萄糖和乳酸的摄入量增加,并降低了葡萄糖和乳酸的利用率。此外,聚元途径被激活,果糖代谢得到增强。将酮用作人类糖尿病心脏中的能源也显着增加。此外,在糖尿病小鼠和患者的心脏中观察到BCAA水平升高和BCAA代谢受损。糖尿病心脏中能量底物偏好的转移会导致氧气消耗量增加和氧化磷酸化受损,从而导致糖尿病性心肌病。但是,
衰竭,房颤,传导疾病和类风湿关节炎。全基因组关联分析确定了11个与T1时间相关的独立基因座。与葡萄糖转运(SLC2A12),铁稳态(HFE,TMPRSS6),组织修复(ADAMTSL1,VEGFC),氧化应激(SOD2),心脏肥大(MYH7B)和钙信号(Camkk2D)相关的鉴定的基因座与葡萄糖相关的基因相关的基因。使用TGFβ1介导的心脏成纤维细胞激活测定法,我们发现11个基因座中有9个包含表达和/或开放式染色质构象的时间变化,这些基因支持其生物学与肌纤维纤维细胞的生物学相关性。通过利用机器学习,使用心脏成像对心肌间质性纤维化进行大规模定量,我们验证心脏纤维化和疾病之间的关联,并确定纤维化潜在的新型生物学相关途径。
作用(图 1)。肌联蛋白是由 TTN 基因编码的蛋白质,是肌节的重要组成部分,负责协助调节心肌收缩。1,2 作为已知的最大的人类蛋白质,肌联蛋白由大约 33,000 个氨基酸组成,对于维持肌肉细胞的结构稳定性至关重要。1 它的大尺寸也使其容易发生失调,从而导致各种心肌病。3 肌联蛋白有多种亚型,其中 N2B 和 N2Ba 在心脏中最为普遍。2 一项开创性的研究强调了 TTN 基因的变化如何导致扩张型心肌病 (DCM)。3 了解该基因致病变异的机制和病理生理学仍然是准确的基因型-表型关联的挑战,最终将改善对患者及其家属的护理。
由CRX突变(LCA7)突变引起的Leber先天性amaurosis病例表现出早期形式,并显示出显着的光感受器功能障碍和最终损失的迹象。为了建立一种研究基于基因编辑疗法的体外模型系统,我们产生了LCA7视网膜类器官,该器官在CRX中具有主要的致病突变。我们的LCA7视网膜器官会产生未成熟和功能障碍感光细胞的迹象,为我们提供了可靠的体外模型,以概括LCA7。此外,我们进行了一项概念验证研究,在该研究中,我们利用基于等位基因的基因基因编辑来淘汰突变的CRX,并在我们的器官中看到了适度的光感受器表型。这项工作为治疗LCA7的有效方法提供了早期证据,可以更广泛地应用于其他主要的遗传疾病。
费城,2023 年 10 月 31 日——心脏病发作或急性心肌梗死 (MI) 是全球主要死亡原因之一。爱思唯尔出版的《加拿大心脏病学杂志》上发表了最新发布的加拿大心血管学会急性心肌梗死分类 (CCS-AMI),该分类根据心肌损伤对心脏病发作进行了四阶段分类。这项由著名专家团队开展的工作有可能更准确地对心脏病发作患者的风险进行分层,并为开发新的、针对损伤阶段和基于组织病理学的疗法奠定了基础。主要作者、医学博士、理学硕士、北安大略医学院和加拿大安大略省萨德伯里北部健康科学学院心血管科学系的 Andreas Kumar 解释说:“MI 仍然是发病和死亡的主要原因。现有工具使用患者的临床表现和/或心脏病发作的原因以及心电图结果对 MI 进行分类。虽然这些工具对于指导治疗非常有帮助,但它们没有考虑到心脏病发作造成的潜在组织损伤的细节。这项基于数十年数据的专家共识是加拿大和国际上首次发布的此类分类系统。它提供了心脏病发作的更差异化定义,并提高了我们对急性动脉粥样硬化血栓性心肌梗死的理解。在组织层面上,并非所有心脏病发作都是一样的;新的 CCS-AMI 分类为开发更精细的心肌梗死治疗方法铺平了道路,最终可能带来更好的患者临床护理和更高的存活率。” CCS-AMI 分类将心肌梗死后对心肌的损伤描述为四个连续且逐渐严重的阶段。每个阶段都反映了心肌缺血和再灌注损伤的组织病理学从上一阶段的进展。它基于大量关于心肌梗死对心肌影响的证据。随着每个渐进的 CCS-AMI 阶段对心脏的损伤不断增加,患者发生心律失常、心力衰竭和死亡等并发症的风险显著增加。适当的治疗可以阻止损伤的进展并在早期阶段阻止损伤。
方法和结果:从DCM的小儿患者中建立了四种原发性培养的CF细胞系,并与健康对照组的3个CF线相比。与健康CFS相比,DCM CFS之间的细胞增殖,粘附,迁移,AP-Optosis或肌纤维细胞激活没有显着差异。原子力显微镜表明,DCM CFS中的细胞刚度,流动性和粘度没有显着改变。但是,当DCM CFS与健康的心肌细胞共培养时,它们会恶化心肌细胞的收缩和舒张功能。与健康CFS相比,DCM CFS中 RNA测序在DCM CFS中明显不同。 在DCM CFS中,几个道德因素和细胞外基质显着上调或下调。 途径分析表明,在DCM CFS中,细胞外基质受体相互作用,局灶性信号传导,河马信号传导和转化生长因子-β信号通路受到显着影响。 相比之下,单细胞RNA测序表明,在DCM CFS中没有特定的亚群有助于基因表达的改变。RNA测序在DCM CFS中明显不同。在DCM CFS中,几个道德因素和细胞外基质显着上调或下调。途径分析表明,在DCM CFS中,细胞外基质受体相互作用,局灶性信号传导,河马信号传导和转化生长因子-β信号通路受到显着影响。相比之下,单细胞RNA测序表明,在DCM CFS中没有特定的亚群有助于基因表达的改变。
质子泵抑制剂(PPI)诱导的低磁性血症,最初描述的2006年,近年来作为潜在的威胁生命的不良事件的认识越来越多。与组胺-2受体拮抗剂(H2RA)相比,PPI的电解质异常频率更高,包括低镁血症,低钙血症,低核血症和低钠血症;低磁性血症是最常见的。我们报告了一个80岁妇女的案例,她出现了普遍的弱点和腹泻。她被发现具有多种电解质异常,即使在腹泻解决和恢复喂养后也无法解决。但是,她的病情在停用PPI药物后的一周内得到改善。她的医院病程因癫痫发作而复杂化,这归因于影响神经元排出和促进癫痫样活动的细胞膜的离子疗程变化。此外,她经历了由于心肌收缩性降低而导致的Takotsubo心肌病,这是在长期使用PPI引起的电解质不平衡的背景下。
败血症诱导的心肌病(SICM)在高死亡率高的化粪池患者中很常见,其特征是免疫反应异常。由于细胞异质性,了解免疫细胞亚群在SICM中的作用一直具有挑战性。在这里,我们确定了称为CD163 + retnla +(Mac1)的心脏居民巨噬细胞的独特亚群,该巨噬细胞在败血症期间经历自我更新,可以针对以防止SICM。通过将单细胞RNA测序与败血症小鼠模型中的命运映射相结合,我们证明了MAC1亚群具有富含内吞作用的独特转录组特征,并显示了TREM2的高表达(TREM2 HI)。TREM2 HI MAC1细胞积极清除心肌细胞功能障碍线粒体。TREM2巨噬细胞中的缺乏症会损害MAC1亚群的自我更新能力,从而导致消除有缺陷的线粒体受损,心脏组织中的炎症过度反应,加剧心脏功能障碍和生存率降低。值得注意的是,脑内施用TREM2 HI MAC1细胞可防止SICM。我们的发现表明,TREM2 HI MAC1细胞的调节可以作为SICM的治疗策略。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
一名 21 岁女性因过去 4 天出现急性胸痛、呼吸困难和端坐呼吸而入院。患者在前 2 周出现低烧。既往病史为 β 地中海贫血/血红蛋白 E 病,每月定期输注 2 个单位的红细胞。该病因继发性血色素沉着症而变得复杂,并影响心脏、肝脏和内分泌(糖尿病)。过去一年,她的血清铁蛋白水平在 8000 至 15,000 ng/mL 之间(正常参考值为 13-150 ng/mL)。5 年前进行的心脏磁共振成像 (CMR) 和 T2 ∗ 弛豫测量显示心脏有轻微铁沉积,心脏 T2 ∗ 为 16 毫秒(正常参考值为 > 20 毫秒)。心脏大小和功能均保留,左心室射血分数 (LVEF) 为 56%,无明显心肌瘢痕。肝脏严重铁沉积,肝脏 T2 ∗