摘要 DNA 拓扑异构酶 II α (170 kDa, TOP2 α /170) 诱导增殖细胞中瞬时 DNA 双链断裂,以解决染色体凝聚、复制和分离过程中的 DNA 拓扑纠缠。因此,TOP2 α /170 是抗癌药物的主要靶点,其临床疗效常常因化学耐药性而受到影响。尽管已经确定了许多耐药机制,但人类癌细胞系对 TOP2 α 界面抑制剂/毒药的获得性耐药通常与 Top2 α /170 表达水平的降低有关。我们实验室最近的研究,结合其他研究人员的早期发现,支持以下假设:对 TOP2 α 靶向药物的获得性耐药的主要机制是由于替代的 RNA 加工/剪接。具体而言,已报道了几种 TOP2 α mRNA 剪接变体,它们保留了内含子,并被翻译成缺乏核定位序列的截短 TOP2 α 异构体,随后导致核质分布失调。此外,内含子保留可能导致截短异构体缺乏核定位序列和活性位点酪氨酸 (Tyr805),而活性位点酪氨酸是形成酶-DNA 共价复合物所必需的,并且在存在 TOP2 α 靶向药物的情况下诱导 DNA 损伤。最终,这些截短的 TOP2 α 异构体导致药物对细胞核中的 TOP2 α 的活性降低并表现出耐药性。因此,对调节 TOP2 α 前 mRNA 的替代 RNA 加工的机制的完整表征可能会产生新的策略来规避获得性耐药性。此外,新型 TOP2 α 剪接变体和截短的 TOP2 α 同工型可用作药物耐药性、预后和/或直接未来 TOP2 α 靶向治疗的生物标志物。
引言Duchenne肌肉营养不良(DMD)是一种X连锁疾病,影响了5,000名新生雄性中约1个(1)。它是儿童期肌肉营养不良的最常见,并且是由于缺乏与膜相关蛋白质肌营养不良蛋白而导致的,这对于肌肉细胞中适当的力量传播至关重要(2,3)。肌营养不良蛋白的丧失导致骨骼肌损伤过敏,并导致心脏功能障碍。骨骼肌最初会经历损伤和修复的一轮,但修复最终开始失败,肌肉被纤维化和脂肪代替。肌肉的损失从近端到远端,呼吸道肌肉和/或心力衰竭作为死亡原因,通常在生命的第二个或第三个十年(4)。心脏病首先表现出舒张功能障碍,后来发展为扩张的心肌病(DCM)和衰竭(5-8)。DMD的基因治疗已以多种形式的高度截短的多种疾病(微肺炎)的形式进入了诊所,该版本是通过腺相关病毒(AAV)传递的。虽然AAV在感染和转导的肌肉方面高效,但其小包装能力(〜5 kb)使得无法容纳全长的肌营养不良蛋白编码序列(〜14 kb)。这是需要使用AAV传递高度截断性肌营养不良蛋白(9,10)的编码序列的,或者使用AAV来改变框架外肌营养不良蛋白mRNA的剪接,以创建删除恢复适当的阅读框架的删除(11,12)。无论哪种情况,目标都是表达截短的肌营养不良蛋白以减慢疾病进展。该策略实质上是旨在将DMD转变为较慢的肌肉营养不良症,可能更像是某些形式的贝克尔肌肉营养不良症(BMD),这种疾病是由营养不良蛋白突变引起的,这些突变引起的,导致各种形式的多种疾病的疾病率相关,导致产生多种截断形式的疾病进程。
摘要基于Korteweg-de Vries(KDV)方程,具有可变传输因子的热态运动系统(TM)系统用于模拟石墨烯片中折磨的类似孤子状的热疗法。Painlevé测试被用来发现方程式是可止痛的。然后,获得了使用截短的Painlevé扩展的自动 - 伴侣转换。关于其他变量,Auto-Bäcklund变换将非线性模型转换为一组线性偏微分方程。最后,对基于获得的自动bäcklund变换的各种明确的精确解决方案进行了构成,并以3D,2D和Cortour图在研究的解决方案中进行了说明。更重要的是,Cole-Hopf转换与Hirota的双线性技术一起使用,以获得多个常规和奇异的扭结溶液。
备受期待的量子计算机的使用是模拟复杂的量子系统,包括分子和其他多体系统。一种有前途的方法涉及直接应用Uni-taries(LCU)的线性组合,以通过在一定序后截断来近似泰勒级数。在这里,我们提出了该方法的适应,该方法针对具有广泛变化的术语的哈密顿人优化,就像电子结构计算中一样。我们表明,使用由迭代过程确定的较大的幅度项使用较大的幅度项,将LCU应用更为有效。我们在这种广义的截短的泰勒方法的模拟误差上构成了界限,并且对于一系列分子模拟,我们报告了这些界限以及确切的数值结果。我们发现,对于给定的电路深度,我们的自适应方法通常可以通过数量级提高模拟精度。
摘要。在这项研究中,使用随机微分方程分析了具有Michaelis-Menten功能的葡萄糖 - 胰岛素模型,作为胰岛素降解的速率。此外,我们使用米尔斯坦法解决了随机葡萄糖胰岛素模型,该方法基于截短的ITO-Taylor膨胀。随机和确定性模型的近似解的比较。一个模型允许在葡萄糖胰岛素疾病中随机波动。此外,随机葡萄糖胰岛素模型的数值解决方案还可以洞悉其变异性。该模型准确地预测了葡萄糖 - 胰岛素动力学,这是管理糖尿病的强大工具。分析和仿真结果是一致的。可能会导致改进的治疗策略和个性化的医疗干预措施。治疗和胰岛素注射对这些参数敏感。数值模拟证实了理论结果。2020数学主题分类:34L99关键词和短语:统计见解,随机葡萄糖 - 胰岛素动力学,建模胰岛素降解,Michaelis-Menten函数
实现了对大气参数的依赖性。提出了新颖的简化指标来评估CBC的性能。几个光束pro纤维(超高斯,截短的高斯等)和gemetries在远端的最大强度方面进行了分析。提出了取决于油炸半径的PCBC效率的近似公式。将CBC建模的结果与湍流气氛中高斯束传播模型的结果进行了比较。分析了CBC性能对C N 2参数,范围和高程角的依赖性。可以得出结论,如果没有有效的自适应光学系统,CBC在中和远程传播中的应用是不切实际的。©2020中国军械学会。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
锂电池已被广泛用作新能量,以应对环境和能量的压力。锂离子电池的剩余使用寿命(RUL)的预后已经变得更加关键。方便的电池寿命预测允许早期发现性能定义,以帮助迅速维护电池系统。本文提出了一个基于降解轨迹和多个线性回归的坐标重新构造的锂离子电池的RUL预后模型。首先,使用新的采样规则来重新配置新电池的退化数据的坐标和截短的类似电池。然后,使用重新配置数据建立了相似和新的锂离子电池之间的关系。此外,通过考虑时间变化因素的影响,建立了基于降级轨迹和多线性回归的坐标重新配置和多线性回归的新的RUL预后模型,该模型可以通过小样本数据来提高预测准确性,并有效地减少产品开发时间和成本。
我们在本期特刊中的提议是根据两性霉素B和类似物的生产模式以及基因在Nodosus中基因工程产生的截短的聚酮化合物中间体提取生物表面活性剂。两性霉素B和类似的抗生素也作为生物表面活性剂也起作用,因为它们已经从两亲性分子的角度进行了研究,并充当了一种强大但有毒的药物,用于针对真菌感染和利什曼氏菌。在大规模上,分子和中间体可以通过遗传修饰以低成本产生,这些修饰从nodosus链霉菌产生了两性霉素B。我们提出了通过完整化学分析的这种分子(表面活性剂)制造和纯化的改进方法。新的细菌突变体将产生用于商业和研究目的的生物表面活性剂。hamycin是另一种属于七烯多抗生素的多聚抗真菌抗生素(也是一种生物表面活性剂),是由从土壤中分离出的放线菌的链霉菌Pimprina产生的。
后代或Hutchinson-Gilford综合征是一种罕见的疾病,其特征是加速性衰老。据估计,有400万活出生有记忆,目前约有400名儿童被诊断出患有这种疾病。出生时没有发育,症状出现大约一年后出生,而后代患者的平均寿命为14岁。以及特征性的身体特征,例如大头,小的面部特征和秃发,患有联合问题和心脏病的儿童可能导致致命的心脏病发作或中风。在2003年,科学家发现层粘连蛋白A基因中的单点突变(GGC> GGT)是后代的遗传疾病驱动器。点突变导致层蛋白A蛋白的截断,从而导致细胞中核膜的稳定。截短的层蛋白A蛋白也称为孕激素。核膜不稳定的影响导致转录,线粒体功能障碍以及加速细胞死亡和衰老的失调。在受外部力量(例如心血管和肌肉骨骼组织)的组织中显着看到了这些作用。
高斯流程(GPS)[1]是机器学习中的一种多功能工具,但对它们的构成诸如阳性,单调性或物理约束之类的约束是具有挑战性的[2]。过去的作品已考虑将GPS作为差异方程的解决方案[3],时间和光谱重建问题[4],或通过线性操作员注入域特异性约束[5]。其他作品与非线性函数相结合的GP输出[6,7],通过约束边际可能性[8]或铸造线性约束作为截短的多变量高斯分布的条件期望,将输出结合到正值[9]。在这项工作中,我们旨在发现一个积极价值的天文光谱的潜在空间。在过去的降低谱图[10,11,12]的作品中,[13]独特地纳入了非阴性约束。,我们通过将其外部限制到正值来扩展高斯过程潜在变量模型(GPLVM)[14]。天文光谱的幅度不是本质的物理特性,不应在潜在空间中反映。我们引入了规模不变,并表明它会导致更好的重建。